

REVEALING CHARGE (AND SPINS?) EXCITATIONS IN IRON-BASED SUPERCONDUCTORS USING RESONANT INELASTIC X-RAY SCATTERING

I. Jarrige^{1, 2}

Fe *L-edge / soft x-rays RIXS* : Y. Harada³, H. Niwa³, C. Sakai³

Fe K-edge / hard x-rays RIXS :
K. Ishii^{1,2}, H. Gretarsson⁴, Y.-J. Kim⁴, J. Kim⁵, M. Upton⁵, D. Casa⁵, T. Gog⁵, J.P. Hill⁶, X. Liu⁶, T. Fukuda^{1,2}, M. Yoshida¹, N. Hiraoka⁷, K.D. Tsuei⁷, M. Ishikado^{1,2}, S. Shamoto^{1,2}

¹Japan Atomic Energy Agency; ²JST-TRIP; ³University of Tokyo; ⁴University of Toronto; ⁵Advanced Photon Source; ⁶Brookhaven National Laboratory; ⁷NSRRC RIXS ON THE Fe SUPERCONDUCTORS: A SLOW START...

• The iron-based superconductors are one of the top topics in recent science:

•#1 most cited publication in 2008 (Y. Kamihara *et al.*, JACS 130, 3296)

•#6 top topics of Thomson Reuters' 2009 compilation

• Still a lot of work ahead, superconductivity mechanism not fully understood yet.

• Only *three* RIXS studies published so far (metals are no good for RIXS!) :

- W.L. Yang *et a*l., Phys. Rev. B 80, 014508 (2009) No RIXS signal
- + J. N. Hancock et al., Phys. Rev. B 82, 020513 (R) (2010) weak RIXS signal
- I. Jarrige et al., Physica C 470, S377 (2010)

• Goal: Try with <u>higher resolution</u>, <u>better statistics</u>, and <u>lot of</u> <u>patience</u>.

···· BUT A STRONG FINISH?

The second se

WHY TWO EDGES FOR ONE STUDY?

• Excellent complementarity

 The combined use of both edges enables an indepth diagnosis of the electronic and magnetic properties

WHY RIXS ?

- RIXS = spectroscopic + scattering techniques combined together.
- Information about the type of glue for superconducting electrons.
- Quantitative estimation of the on-site Coulomb interaction and Hund coupling.

EXPERIMENTAL: BEAMLINES

K edge

L edge

Fe-K: E=7120 eV, $\Delta E=230$ meV

Beamline : 30-ID Endstation : MERIX (1-m Ge(620))

Beamline : BL07SU Endstation : HORNET (Sample - detector: 3m)

K edge

PrFeAs0

INCIDENT ENERGY DEPENDENCE

Log

Intensity)
RIXS signal
very weak!

K edge

INCIDENT ENERGY DEPENDENCE

- Excitations appear at approximately the same energies for both K-
- degeterndse∠leadgevity of the intermediate state at ∠ edge as a function of Ei

Edge	K	L
Acquisition time (h)	4	1
ΔE (meV)	230	160
Elastic intensity	SPIN ⁷ EXCITATION? ¹	

- Low-energy (~0.25 eV) excitation enhanced with in-plane momentum contribution: assigned to xy → xy excitation.
- Spin excitation predicted to reach 0.1 eV at $(0.5\pi, 0)$

- Spin excitation predicted to reach 0.1 eV at $(0.5\pi, 0)$, should be observable with $\Delta E \approx 70$ meV $(E/\Delta E=10000)$.

L edge

PrFeAs0_{0.7}

INCIDENT ENERGY DEPENDENCE

KFe_{1.8}Se₂

L edge

-Flat surface > Weaker elastic line - Large magnetic moment > High-energy magnons

In per scan for PrFeAsO_{0.7}, 30 min per scan and weaker flux for
 WeakerSeelastic line and stronger Raman spectral weight for K_{0.8}Fe₂Se₂, but Raman features not as sharp

SPIN EXCITATIONS?

 Low-energy (~0.2 eV) excitation enhanced with in-plane momentum contribution: Spin excitation? → Perhaps, but need to measure other momenta + increase statistics (spectrum shown above is 3h measurement time)

CONCLUSION

• First observation of charge excitations using RIXS in an iron-based superconductor

• K-egde: Comparison with theory yields U=2.4 eV for PrFeAsO

• L-egde: Higher energy resolution, stronger Raman signal, and weaker elastic line compared with K-edge, but needs to be cautious with surface oxidation. Spin excitations can be observed, although with more flux or longer acquisition time.

•Wish list for HORNET

- In-situ manipulator for sample cleaving
- Low-temperature
- More flux... or more beamtime?

TIME DEPENDENCE

Figure 3: Time dependence of the Fe-L XAS spectrum measured on $K_{0.8}Fe_2Se_2$ in the fluorescence yield mode. The sample position is fixed.

Figure 4: Time dependence of the Fe RIXS spectrum measured on $K_{0.8}$ Fe₂Se₂ for E_i=712.5 eV. The sample position was continually scanned for scans #1 and #3, and fixed for the first 10 minutes of scan #2 (one scan measurement time = 30 minutes).

K edge **PrFeAs0**

ELECTRON CORRELATION EFFECTS

• Comparison with calculations based on a **16 band** *dp* **mode** for the **AF ground stand d agreement** with experiment for **U=2.4 eV** K edge PrFeAs0

MOMENTUM DEPENDENCE

•Weak, but sizeable momentum dependence