液晶棒状分子のアルキル鎖構造とダイナミクス

鈴木晴¹, 稲葉章¹, Jan Krawczyk², Maria Massalska-Arodź², 菊地龍弥³, 山室修³ (¹阪大院理, ²ポーランド科学アカデミー, ³東大物性研) H. Suzuki¹, A. Inaba¹, J. Krawczyk², M. Massalska-Arodź², T. Kikuchi³, O. Yamamuro³ (¹Osaka Univ., ²Polish Acad. Sci., ³ISSP, Univ. Tokyo)

AGNES 分光器に対する期待

測定は, AGNES 分光器 (分解能 120 μeV)を用いて行った. いずれの化合物でも、準弾性スペクトルは2つのローレンツ関数でフィットできた.

AGNESのエネルギー分解能より、分子全体の長軸回りの回転運動が観測されたと予想される、 準弾性スペクトルは強い Q 依存性を示したため、HWHM = hDQ^2 より拡散係数 D を算出した. Dの温度変化より、アレニウスプロットから各モードの活性化エネルギーを求めた. アルキル鎖の枝分かれ構造は、この分子運動を遅くすることが確認された、他方、アルキル鎖中に C-O-C 構造を導入 しても運動様式は大きく変化しないことも示された.

> 液晶物質のような複雑な相挙動を示す化合物の場合、測定時間の大部分は 相を作ることに(温度変化やアニール操作)当てられてしまう、分光器の 外部に、相を作るためのクライオスタットがあれば、中性子を有効に使え るのではないだろうか?