気体高圧下における水のダイナミクスとハイドレート形成 IRT, 東大物性研 菊地龍弥, 山室修

実験

試料 内径 14mm の円筒に厚さ 0.5mm の軽水 (H₂O) を入れ、以下の条件下で測定 モル比で最大 2% 程度溶解。() 内は、ハイドレート生成温度 *T*_F

Ar 100 MPa (293K), Ar 50 MPa (287.5K), N₂ 100 MPa (292K) CO₂ 3.0 MPa (280K), Xe 14 MPa (311.5K), Xe 3 MPa (303K)

液体高圧下 H₂O 100 MPa

温度 323K (50℃) から 263K (-10℃) まで、冷却方向で水が氷に結晶化するまで測定

測定装置 物性研の高分解能パルス中性子分光器 AGNES

付属装置
 ・気体高圧システム
 ・液体高圧システム
 ・市本少ガス高圧システム
 ・今年設置)

解析

0.85 0.90 0.95 1.00 1.05 1.10 一様に緩和時間が長くなっている

 $T_{
m F}$ / T

まとめと考察

	- 1. 結晶化による影響	- 2. 局所構造の変化
すべてのサンブル・温度で気体分子 の効果が観測できた。また、 T_F でダイ	$T_{_{ m F}}$ 以下の温度では、結晶生成が起こっているため	上で示したモデルでは、水溶液中で局所ケージ構造が
	その結晶周辺では、水分子の運動は遅くなっている	できているとしたが、
ナミク人か変化することかわかった。	と考えられる。その影響で全体としても遅くなっている。	T _F 以下で初めて局所ケージ構造ができると考えられる。
この変化について、2 通りの可能性 を考えている。	図からも、結晶生成が多いサンプルほど	より大きくて、ハイドレートができやすいゲスト分子
	拡散係数の傾きの変化が大きい。	で拡散係数の傾きの変化が大きい。