中島研究室 ### Nakajima Group ### 研究テーマ Research Subjects - 1 中性子散乱によるトポロジカル磁気秩序とそのダイナミクスの研究 - Neutron scattering studies on topological magnetic orders and their dynamics - 2 偏極中性子散乱法を用いた磁性体の磁気構造解析 Magnetic structure analysis by means of polarized neutron scattering - 3 異方的な応力を用いた交差相関物性現象の開拓 Exploration of novel cross-correlated phenomena induced by anisotropic stress - 4 時分割中性子散乱法を用いたパルス強磁場中の磁気構造研究 Study on magnetic structures in high fields by means of time-resolved neutron scattering with pulsed magnetic fields 助教 齋藤 開 Research Associate SAITO, Hiraku 准教授 中島 多朗 Associate Professor NAKAJIMA. Taro 専攻 Course 工学系物理工学 App. Phys., Eng. 固体の磁気的性質は非常に古くから知られており、精力的に研究されてきたテーマである。例えば我々の身近にある磁石では、固体中のスピンが自発的に同じ方向に揃う「強磁性」が実現している。これ以外にも、らせん型や渦型など様々な磁気秩序が存在するが、近年それらのスピン配列の幾何学的特徴が、物質の誘電性、伝導性、あるいは弾性などを大きく変化させ得ることが明らかになってきた。本研究室ではこのような「スピン秩序によって引き起こされる創発物性現象」を主な研究テーマとしている。例としては、らせん型の磁気秩序によって電気分極を生じるマルチフェロイック系や、トポロジカルな渦状磁気構造である磁気スキルミオン等を対象として、中性子散乱とX線散乱を用いて磁気秩序とその励起状態を明らかにすることに取り組んでいる。また、中性子散乱技術自体を発展させるべく、多重極限環境下の測定や時分割測定など、新たな手法開発にも取り組む。 Magnetism in solids has been extensively studied in the field of condensed matter physics. A well-known example is ferromagnetism, which means that magnetic moments in a solid are spontaneously aligned to be parallel to each other owing to exchange interactions. Besides the ferromagnetism, there are various types of orders of magnetic moments, such as collinear antiferromagnetic and helical magnetic orders. Among them, non-collinear or non-coplanar magnetic orders have recently attracted increasing attention because they can lead to time-space symmetry breaking which may dramatically alter electronic properties of the systems. We study emergent phenomena induced by the non-collinear/non-coplanar spin orders by means of neutron and X-ray scattering techniques. One example is spin-driven ferroelectricity, where a spiral magnetic order breaks spatial inversion symmetry of the system and leads to spontaneous electric polarization. Another example is a vortex-like spin texture called magnetic skyrmiom, which often appears in a long-wavelength helimagnet. By the virtue of the topologically-nontrivial spin texture, the magnetic skyrmion induces an effective magnetic field acting only on conduction electrons. We are also exploring new methodologies in neutron and X-ray scatterings, such as time-resolved neutron scattering, to investigate the unconventional magnetic orders in detail. (a) 磁気スキルミオン格子状態におけるスピン配列の模式図 (b) 磁気スキルミオン物質 MnSi の熱平衡 - 準安定状態図。0.2 T の磁場中で急加熱・急冷することで準安定スキルミオン状態が実現する。 MnSi の準安定スキルミオン格子が熱パルスによって消滅し、その後再形成される過程を時分割中性子小角散乱によって観測した結果。 The results of time-resolved neutron scattering measurement on MnSi in a magnetic field; the hexagonal diffraction patterns correspond to a triangular lattice of metastable skyrmions # 益田研究室 ### Masuda Group ### 研究テーマ Research Subjects - 1 交替磁性体マグノンのカイラル分裂 Chiral split of altermagnetic magnon - スピン超固体のダイナミクス Dynamics of spin supersolid - 中性子分光器の開発 Development of neutron spectrometer 浅井 晋 Research Associate ASAI, Shinichiro 教授 益田 隆嗣 Professor MASUDA, Takatsugu 専攻 Course 新領域物質系 Adv. Mat., Frontier Sci. 基礎から応用まで幅広く研究されている磁性体は、量子現 象開拓のフロンティアとしても多くの興味を集めている。本 研究室は、様々な磁性体の新しい量子現象・量子状態を実験 的に発見し、その機構を解明することを目標としている。主 に J-PARC に設置されている HRC 分光器を利用した研究(左 図参照)を推進してきたが、ここ数年は、磁性体のダイナミ クスを高効率で測定する新しい中性子分光器 HOrizontally Defocusing Analyzer Concurrent data Acquisition (HODACA, 右図(a)参照)の開発にも手を広げた。2023年度にフラスト レート磁性体 CsFeCl₃ を用いた試験運転が行われた。右図 (b) に示されるように正しくブラッグピークが観測され、右図(c) に示されるように先行研究と一致する磁気励起が観測された。 従来の分光器と比べて70倍の測定効率であることが明らかと なった。今後は、HRC 分光器と HODACA 分光器の相補利用に より、交替磁性体マグノンのカイラル分裂、スピン超固体のダ イナミクス、スピン波スピン流などの新しい現象を探索する。 Magnetic materials, which are studied across a wide range from fundamental research to applications, have also attracted significant interest as a frontier for exploring quantum phenomena. Our group aims to experimentally discover novel quantum phenomena and quantum states in various magnetic materials and to elucidate their underlying mechanisms. While our research has primarily utilized the HRC spectrometer installed at J-PARC (see left figure), in recent years we have also expanded our efforts to include the development of a new neutron spectrometer, the Horizontally Defocusing Analyzer Concurrent data Acquisition (HODACA, see right figure (a)), designed for highly efficient measurements of magnetic dynamics. In fiscal year 2023, a test operation using the frustrated magnet CsFeCl3 was conducted. As shown in the right figure (b), Bragg peaks were correctly observed, and magnetic excitations consistent with previous studies were detected, as shown in the right figure (c). It was found that HODACA offers a measurement efficiency 70 times higher than conventional spectrometers. Going forward, by complementarily utilizing the HRC and HODACA spectrometers, we aim to explore new phenomena such as chiral magnon splitting in alternating magnets, the dynamics of spin supersolids, and spin-wave spin currents. (a) 交替磁性体 MnTe の中性子スペクトル。約2 meV のマグノン分裂が観測され た。(b) 計算された中性子構造因子のカイラル項。分裂したマグノンが異なるカ イラリティを持つことを示している。 (a) Neutron spectrum of the altermagnet MnTe. A magnon splitting of approximately 2 meV was observed. (b) Calculated chiral term of the neutron structure factor. The split magnons have different chiralities. (a) HODACA 分光器全景。 (b) HODACA で観測されたフラストレート磁性体 $CsFeCl_3$ のブラッグピークプロファイル。 (c) HODACA で観測された $CsFeCl_3$ の 磁気励起スペクトル。白線は先行研究による理論曲線。 (a) Overview of HODACA spectrometer. (b) Bragg peak profiles measured in a frustrated magnet CsFeCl3 by HODACA. (c) Magnetic excitation measured by HODACA. White curve is a theoretical curve reported in a previous study. ## 真弓研究室 Mayumi Group ### 研究テーマ Research Subjects - 高強度高分子材料の強靭化メカニズムの解明 Toughening mechanism of tough polymeric materials - 2 中性子・X線小角散乱法を用いた多成分系高分子・ソフトマター 材料の構造解析 - Structure of multi-component polymer and soft matter systems by small-angle neutron/X-ray scattering - 3 中性子準弾性散乱法を用いた多成分系高分子・ソフトマター 材料のダイナミクス解析 - Dynamics of multi-component polymer and soft matter systems by quasi-elastic neutron scattering 助教 小田 達息 Research Associate ODA, Tatsuro 准教授 真弓 皓一 Associate Professor MAYUMI, Koichi 専攻 Course 新領域物質系 Adv. Mat., Frontier Sci. 本研究室では、高分子をはじめとしたソフトマターの物性発現機構の解明を目指している。例えば、近年ナノ・分子レベルでの構造制御により高分子材料の機械強度は飛躍的に向上しつつあり、そのような高強度高分子材料は、人工関節や人工血管などの医療材料、ソフトロボット用のアクチュエーター、車・飛行機などに用いる構造材料としての応用が期待されている。我々は、高強度高分子材料に対して、中性子・X線小角散乱法および中性子準弾性散乱法によって変形下におけるナノ構造・ダイナミクスの計測を行っている。高分子材料は多成分で構成されていることが一般的であるが、中性子散乱法を用いると、重水素化ラベリングによって各構成要素を選択的に観察することが可能となる。散乱法によって明らかにされた階層構造・ダイナミクスとマクロな力学・破壊挙動との相関を解明するとともに、新規材料設計指針の探索を行っている。 The research goal of our group is to understand molecular mechanisms for macroscopic properties of soft materials. One of our targets is to understand toughening mechanisms of polymeric materials. Recently, the fine control of nano structure has significantly improved the mechanical toughness of polymer-based materials. The tough polymeric materials are expected to be applied for biomaterials, soft robots, and structural materials for automobiles and airplanes. To reveal molecular mechanisms of their macroscopic mechanical properties, we study nano-structure and dynamics of the tough polymeric materials under deformation by means of in-situ light, X-ray, and neutron scattering measurements. Especially, small-angle and quasi-elastic neutron scattering measurements with deuterium labelling enable us to observe separately each component in multi-component systems. By combining the nano-scale structure/dynamics measurements with macroscopic mechanical tests and molecular dynamics simulations, we aim to establish molecular understandings of toughening mechanisms for polymeric materials and discover novel molecular designs for tough materials. self-reinforced gel Conventional gel break 伸長すると高分子鎖が結晶化し、鎖の破断を防ぐ自己補強ゲルを開発した。 この伸長誘起結晶は、力を取り除くと消失し、自己補強ゲルは元の状態まで復元する。 We have developed self-reinforced gels in which polymer chains are crystallized under stretching. The crystalline domains disappear immediately after the strain is released. The reversible strain-induced crystallization simultaneously realizes high toughness and rapid recoverability under repeated deformation. 通常の高分子ゲルの場合、亀裂を入れた試験片を引っ張ると、すぐに亀裂が進展して、破断してしまう。一方で、自己補強ゲルでは、亀裂の周辺において高分子鎖が引き延ばされて結晶化することで、亀裂の進展が抑制される。 When we stretch a pre-notched specimen of a conventional polymer gel, the crack propagates immediately and the sample is broken. For the self-reinforced gel, the strain-induced crystallization of polymer chains near a crack tip suppresses crack propagation. $https://www.issp.u-tokyo.ac.jp/main contents/organization/labs/mayumi_group.html. A content of the of$ ## 関研究室 Seki Group 客員教授 関 真一郎 Visiting Professor SEKI, Shinichiro 本研究室では、幾何学的な性質(トポロジー・対称性・次元性など)に立脚した新物質開拓を通じて、革新的なエレクトロニクス・スピントロニクス機能を実現することを目指している。通常、電子の振る舞いは外部から与えられた電場や磁場によって制御される。一方、トポロジカルな秩序構造を伴う物質中では、電子が曲がった空間を感じることにより「創発電磁場」と呼ばれる巨大な仮想電磁場が生じることが発見され、その積極的な活用は物質中の電子の制御手法を根底から変える可能性を秘めている。こうした系のトポロジー・対称性・次元性に由来した未踏の量子現象が発現する新物質の設計・開拓を、中島研究室をはじめとする物性研究所の方々と協力して実施するとともに、微細加工技術を駆使したマイクロデバイスの作成・計測を通じて、超低消費電力な情報処理・超高感度なセンシング等の応用につながる、新しい電子機能の実現に取り組む。 Our group develops novel electronic and spintronic functions through the exploration of new materials with nontrivial topology and symmetry. Usually, the behavior of electrons is controlled by the external electric and magnetic fields. On the other hand, in materials with topologically nontrivial orders, electrons feel giant "emergent" electromagnetic fields due to the curved geometry, and their effective use can dramatically change the way to control electron dynamics. In collaboration with Prof. Nakajima group and other members of ISSP, we design and synthesize new material systems to realize such unique quantum phenomena. By employing the state-of-the-art crystal growth and micro-fabrication techniques, we develop novel electronic functions potentially suitable for various applications such as information processing with ultra-low energy consumption or information detection with ultra-high sensitivity. # 附属国際超強磁場科学研究施設 **International MegaGauss
Science Laboratory** 当施設では、パルスマグネットによって強力な磁場を発生し、様々な物質(半導体、磁性体、金属、絶縁体など)の電子状態を調べている。非破壊型パルスマグネットは75テスラ程度まで発生可能であり、電気伝導、光学応答、磁化などの精密物性計測、高圧や低温と組み合わせた複合極限実験に用いられる。また国内外の強磁場を必要とする物性科学の研究に幅広く利用されている。スーパーキャパシター電源(150メガジュール)と組み合わせた超ロングパルス(1~10秒程度)を用いれば、準定常磁場として精密熱測定なども可能であり、開発中の非破壊100テスラ磁場発生にも用いられている。他方、破壊型パルスマグネットには一巻きコイル法と電磁濃縮法があり、100~1000テスラの超強磁場を発生可能である。極限的な強磁場が誘起する新奇現象探索を通じて、化学・生命や宇宙物理との融合研究への展開も行なっている。 In the IMGSL, electronic states of matter are investigated using pulsed magnets. Many kinds of materials, such as semiconductors, magnetic materials, metals, and insulators have been studied. Non-destructive magnets can generate fields up to approximately 75 T and are used for high-precision experiments, including electrical resistivity, optical property, and magnetization measurements. Combinations of high pressures and low temperatures with a high magnetic field are also available. These experimental techniques are open for domestic as well as international researchers. The magnet technologies are intensively devoted to developments for the quasi-steady long pulse magnet (an order of 1-10 sec) energized by supercapacitors (150 MJ), and also to a 100 Tesla class nondestructive magnet. On the other hand, the single-turn coil and electromagnetic flux compression techniques have been utilized for ultrahigh magnetic field generation exceeding 100 T destructively. Research with the multi-megagauss fields of around 100 to 1000 T has been conducted to discover novel phenomena. Also, we plan to use multi-megagauss fields for interdisciplinary research with chemistry, bioscience, and space physics. 施設長 徳永 将史 Leader TOKUNAGA, Masashi # 金道研究室 Kindo Group ### 研究テーマ Research Subjects - 非破壊パルスマグネットの開発 Development of Non-destructive Pulse Magnets - 2 強磁場を用いたスピン軌道相互作用の強い Mott 絶縁体の研究 Study of Spin-orbital Coupled Mott Insulators at High Fields - 3 有機伝導体の強磁場中電子物性の研究 Study on High-field Electronic Properties of Organic Conductors - 4 パルス磁場中での物性測定手法の開発 Development of Physical Property Measurement Techniques in Pulsed Magnetic Field 教授 金道 浩一 Professor KINDO, Koichi 専攻 Course 理学系物理学 Phys., Sci. 物性測定用途に合わせた様々な到達磁場やパルス長を持つパルスマグネットの開発と、それが作り出すパルス強磁場下での精密物性測定を基盤とした物性研究を行っている。例えば最大75テスラ(T)、4ミリ秒の磁場下での磁化測定、最大65T、30ミリ秒の磁場下での電気抵抗測定、最大43T、1秒の磁場下での比熱測定を行っている。非破壊的な100Tの発生や、より長時間のパルス強磁場の発生を目指してマグネットの開発を行っている。スピン軌道相互作用の強いMott 絶縁体や二次元有機超伝導体といった強磁場下での物性が未知の強相関電子系を主な研究対象とし、量子磁気相や伝導相を探索している。共同研究者から試料提供を受けるだけでなく、自ら興味ある物質を合成して研究を展開している。 We perform materials physics research based on the precise physical property measurements under strong pulsed magnetic fields, which are generated by the tailored pulse magnets with various strength and duration of magnetic fields. We perform e.g. magnetization measurements up to 75 tesla (T) in 4 msec, resistance measurements up 65 T in 30 msec, and heat capacity measurements up to 43 T in 1 sec. We aim to develop the pulse magnets that can generate 100 T non-destructively or ultra-long pulsed magnetic field. We explore quantum magnetic or conducting phases at high fields in strongly correlated electron systems including spin-orbital coupled Mott insulators and quasi-two-dimensional organic superconductors. We synthesize the materials of interest as well as investigate the novel materials developed by the collaborators. スピン軌道相互作用の強い 4d 電子 Mott 絶縁体 $GaNb_4Se_8$ の磁化曲線。小さな磁化と単調な磁化曲線は、磁気転移温度 $T_M=30$ K から期待されるよりも大きなギャップを持つ強固な非磁性基底状態が実現していることを示している。 Magnetization curve of a 4d transition metal Mott insulator GaNb₄Se₈. The featureless magnetization curve with small magnetization indicates that the nonmagnetic ground state with an excitation gap larger than the energy scale of the magnetic transition temperature $T_{\rm M}=30~{\rm K}$ is realized. 二次元有機超伝導体 κ -{BEDT-TTF} $_2$ Cu[N(CN) $_2$]Br の低温強磁場中電気抵抗。磁場によって超伝導が抑制され、超伝導臨界磁場 H_{c2} 以上で常伝導状態となる。 Low-temperature electrical resistance of the two-dimensional organic superconductor κ -(BEDT-TTF)₂Cu[N(CN)₂]Br in high fields. The superconductivity is suppressed by magnetic field and shows the transition to the normal state at upper critical field H_{c2} . # 小濱研究室 ### Kohama Group ### 研究テーマ Research Subjects - レーザーを用いた磁気光学効果の研究とその超強磁場科学への応用 - Magneto-optical measurements with laser optics and its application to ultra-high magnetic field science - 2 パルス強磁場下における NMR 測定と磁性体への応用 NMR measurement under pulsed fields and its application to magnetic materials - 3 微細加工技術を用いた新規測定手法の開発 Development of new measurement techniques with nanofabrication technology - 4 超強磁場を用いた量子振動の観測とトポロジカル絶縁体のフェルミオロジー - Observation of quantum oscillation in ultra-high magnetic fields and fermiology of topological insulators 助教 厳 正輝 Research Associate GEN, Masaki 准教授 小濱 芳允 Associate Professor KOHAMA,Yoshimitsu 専攻 Course 工学系物理工学 App. Phys., Eng. 100 T を超える超強磁場領域は、ごく最近までその発生すら困難であった極限環境であり、人類未踏の研究領域といえる。このような極限環境下では多彩な物理現象が予想されており、当研究室ではこれら新奇物理現象の発見そして解明を目指している。主な実験手法としては、『1.レーザーを用いた磁気光学測定』、『2.微細加工デバイスによる超高速電気抵抗測定』、『3.FPGA デバイスによるパルス強磁場 NMR 測定』、『4.ロングパルス磁場下での時分割中性子回折』を採用もしくは開発しており、これにより様々な強相関電子系における諸現象を探索している。現在の主なテーマは、トポロジカル絶縁体や超伝導物質における強磁場伝導状態の研究や、量子スピン系化合物の磁場誘起相の探索である。最終的な目標には 1000 T 領域での精密な物性研究を掲げており、この達成のために超強磁場発生技術および新規測定技術の開発にも力を注いでいる。 Ultra-high magnetic field (higher than 100 T) is an extreme condition that remains unexplored until recently. In this field region, many of unprecedented phenomena are expected to appear, and their experimental observations and understandings are the focus of our group. To achieve this goal, we employ/develop the following experimental techniques, "1. Magneto-optical measurement under pulsed magnetic fields" "2. Ultra-fast magnetoresistance measurement with micro-fabricated devices", "3. Pulsed-field NMR experiment with a FPGA module", and "4. Time-resolved neutron diffraction under long pulsed fields", and so on. With these state-of-the-art techniques, we currently investigate various field-induced phenomena, such as the quantum transport in topological insulators/superconductors and the novel magnetic phases in quantum spin systems. Our final goal is the extension of the available field range of a condensed matter research up to ~1000 T, and thus our efforts are also devoted to technical developments for ultra-high magnetic field generations as well as the further improvements of measurement techniques α -(BETS) $_{2}$ $_{3}$ の特異な磁場応答性 (a) 低温における磁気抵抗効果。電流と平行に磁場を印加すると、カイラル磁気異常効果による負の磁気抵抗効果が観測される。(b) 電流と垂直に磁場を印可すると、正の磁気抵抗が観測される。 Unique magnetic field response of α -(BETS) $_2I_3$ (a) Magnetoresistance at low temperatures. When a magnetic field is applied parallel to the current, a negative magnetoresistance due to the chiral magnetic effect is observed. (b) Positive magnetoresistance is observed when a magnetic field is applied perpendicular to the current. 高純度銅 (6N) を使ったコイルによるロングパルス磁場発生。黒線は液体ヘリウムで冷却した高純度銅コイルによるパルス磁場。赤線は液体窒素で冷却した高純度銅コイルによるパルス磁場。 Long pulsed magnetic field generated by coil using high-purity copper (6N) wire. The black line is a pulsed magnetic field generated by a high-purity copper coil cooled with liquid helium. The red line is a pulsed magnetic field generated by a high-purity copper coil cooled with liquid nitrogen. ## 徳永研究室 ### Tokunaga Group ### 研究テーマ Research Subjects - マルチフェロイック物質の磁場誘起相転移 Field-induced transitions in multiferroic materials - 2 量子極限状態における電子相転移 Electronic phase transitions in the quantum limit state - 3 パルス強磁場下における高速偏光顕微鏡観察 High-speed polarizing microscope imaging in pulsed-high magnetic fields - 4 トポロジカル物質の強磁場物性研究 High-field study of topological materials 教授 徳永 将史 Professor TOKUNAGA, Masashi 専攻 Course 理学系物理学 Phys., Sci. 助教 近藤 雅起 Research Associate KONDO, Masaki 特任助教 木下 雄斗 Project Research Associate KINOSHITA, Yuto 助教 三田村 裕幸 Research Associate MITAMURA, Hiroyuki 磁場は電子のスピン、軌道運動および位相に直接作用する外場であり、物性物理学の幅広い分野の研究に不可欠である。我々は最高60Tまでのパルス強磁場下における物性研究を通して、強磁場下で実現する新しい量子状態および非自明な磁場誘起現象の探索を行っている。強磁場下で現れる現象の本質を正しく理解するためには、多様な物理量を高い精度で測定することが重要である。我々は、パルス磁場下で起こる磁性、電気伝導性、誘電性、構造、対称性、温度などの変化を瞬間的に検出する測定手法を開発・改良している。これらの測定を駆使して、マルチフェロイック物質における交差相関物性やトポロジカル半金属の磁気輸送特性などを研究している。 また年間 40 件程度の国内および国際共同研究を行い、様々な遍歴・局在スピン系物質、トポロジカル物質などの強磁場物性研究を展開している。 Magnetic fields have been widely used in the research of solid-state physics as they can directly and continuously tune the spins, orbitals, and phases of electrons in materials. We explore novel quantum phenomena and non-trivial field effects in pulsed-high magnetic fields up to 60 T using various state-of-the-art experimental techniques to study their magnetic, transport, dielectric, structural, optical, and caloric properties. In BiFeO₃, which is perhaps the most extensively studied multiferroic material, our high-field studies clarified microscopic origin of the magnetoelectric coupling and revealed non-volatile memory effect, magnetic control of ferroelastic strain, and a novel multiferroic phase at around room temperature. In addition, our high-field experiments on semimetals and semiconductors revealed novel insulating phase in graphite, valley polarization in bismuth, and quantum oscillations in semiconducting tellurium. In addition to these in-house studies, we accept about 40 joint research projects per year and study various localized/itinerant magnets and topological materials in high magnetic fields. BiFeO3 における電気磁気効果の磁場方位依存性。挿入図は 20 T以上の傾角反強磁性相における強磁性磁化とスピン由来の電気分極の回転を表す。 Field-angle dependence of magneto-electric effects in BiFeO₃. The inset schematically shows rotation of the ferromagnetic moment and spin-driven electric polarization in the canted-antiferromagnetic states above 20 T. トポロジカル絶縁体 BiSb 合金の縦磁気抵抗。抵抗率の温度磁場依存性をカラープロットで示した。低温で磁場を増加すると 11 T 付近で半導体から半金属に転移した後、20 T 付近で新たな絶縁体になる。 Longitudinal magnetoresistance of a topological insulator BiSb alloy. The color plot demonstrates field and temperature dependence of the resistivity. Application of the magnetic field causes semiconductor-semimetal transition at \sim 11 T, and induce a novel insulating state at \sim 20 T. ## 松田康弘研究室 ### Y. Matsuda Group #### 研究テーマ Research Subjects - 1 強相関電子系の磁場誘起絶縁体金属転移 The magnetic
field-induced insulator-metal transition of strongly correlated materials - 2 強誘電体の磁場誘起相転移の探索 Quest for the magnetic field-induced phase transition in the ferroelectric material - 3 超強磁場におけるファンデルワールス固体の励起子状態 Excitons in van der Waals solids at an ultrahigh magnetic field - 4 光化学反応における磁場効果の探索 Quest for the magnetic field effect on photochemical reaction 助教 石井 裕人 Research Associate ISHII, Yuto 特任助教 林 浩章 Project Research Associate HAYASHI, Hiroaki 教授 松田 康弘 Professor MATSUDA, Yasuhiro H. 専攻 Course 新領域物質系 Adv. Mat., Frontier Sci. 超強磁場を用いて電子状態のみならず結晶構造にも大きな変化を及ぼす様な、非摂動的磁場効果の探索を行っている。1000 T において自由電子ではスピンや軌道を通じて100 meV 程度のエネルギーが磁場で変化すると期待されるが、固体中では様々な相互作用が拮抗しており、そのエネルギースケールは実行的に増強され得る。例えば、 VO_2 のような絶縁体ではエネルギーギャップが 1 eV のオーダーであるが、200~300 T 程度の磁場で絶縁体から金属に相転移する。一方、この相転移の理解の鍵になるのは、V 原子の二量体に形成される V-V 間の分子軌道が磁場で不安定化する描像である。固体内分子が磁場で壊れる現象は、宇宙の巨大磁場(10^5 T 程度)で生じる H_2 などの分子の崩壊と機構において類似性がある。その他、超伝導体から誘電体、タンパク質など、多彩な対象において、超強磁場中の非摂動的磁場効果による新規現象の探索を行っている。 We are searching for non-perturbative magnetic field effects, such as large changes not only in the electronic state but also in the crystal structure, using ultra-high magnetic fields. In solids, the field-induced energy scale can be effectively enhanced due to the competing nature of the various interactions. For example, an insulator such as VO₂ has an energy gap on the order of 1 eV, but it undergoes a phase transition from insulator to metal at magnetic fields of $200{\sim}300\,\mathrm{T}$. On the other hand, the key to understanding this phase transition is the picture of the destabilization of the V-V molecular orbitals formed in the dimer of V atoms by a magnetic field. The phenomenon of the breakdown of molecules in solids in a magnetic field is expected to be similar in mechanism to the breakdown of molecules such as H_2 that occurs in the huge magnetic field of the universe (about $10^5\,\mathrm{T}$). In addition, we are searching for novel phenomena caused by non-perturbative magnetic field effects in a variety of other objects in ultra-high magnetic fields. Magnetic field-induced insulator-metal transition in VO₂. ビスマス系 Mn 酸化物の磁場温度相図 B-T phase diagram in Bi-based manganite # 宫田研究室 Miyata Group ### 研究テーマ Research Subjects - 1 超強磁場下での磁気光学・THz 分光測定 Magneto-optics and THz experiments under ultrahigh magnetic fields - 2 量子磁性体の超強磁場物性 High-field study on quantum magnets - 3 パルスマグネットの開発 Magnet technology Project Research Associate YANG, Zhuo 准教授 宮田 敦彦 Associate Professor MIYATA, Atsuhiko 專攻 Course 新領域物質系 Adv. Mat., Frontier Sci. 本研究室では、非破壊パルスマグネットの開発・パルス磁場下での新たな測定手法の開発・強磁場物性測定までを一通り行っている。現在、量子カスケードレーザーを用いたパルス磁場下テラヘルツ分光と原子層薄膜試料などの微小試料に対する磁気光学分光(可視・近赤外領域)を試みている。これにより、ファンデルワールス磁性半導体で観測された特異な励起子状態の解明やトポロジカル近藤絶縁体・励起子絶縁体などの特異なバンド構造の理解を深める。また、100 Tを越すメガガウス超強磁場下での物性測定にも積極的に取り組んでいる。 We have been working on magnet technology and new measurement techniques for pulsed magnetic fields and also studying ultrahigh-magnetic-field science. Currently, we are developing THz spectroscopy techniques using quantum cascade lasers and magneto-optical spectroscopy for atomic-layer materials. We apply these techniques to van der Waals magnetic semiconductors exhibiting exotic excitons and topological Kondo insulators and excitonic insulators to understand their unconventional band structures. We are also working on megagauss science using destructive pulsed magnets. ファンデルワールス磁性体 FePS3 では、ジグザグ磁気構造に由来した巨大な線形二色性が報告されている。超強磁場を印加し、磁気秩序の対称性を変化させることにより、巨大な線形二色性の制御を可能とした。 In the van der Waals magnet FePS₃, giant linear dichroism is originating from the zigzag magnetic structure. Ultrahigh magnetic fields can control the giant linear dichroism by changing the symmetry of the magnetic order. Yafet-Kittel 型フェリ磁性体(MnCr $_2$ S $_4$)の超強磁場磁化過程。Mn $_2$ Cr イオン間に働くスピン格子相互作用によってプラトー状態を含む多彩な磁気構造をとることを示した。 Magnetization process of the Yafet-Kittel ferrimagnet $MnCr_2S_4$. Strong spin-lattice coupling between Mn and Cr ions is the origin of its rich phase diagram including a robust magnetization plateau. # 附属計算物質科学研究センター Center of Computational Materials Science 「富岳」スーパーコンピュータに代表される近年の計算 機の発展に伴って、大規模計算や網羅計算による物質科学 へのアプローチが盛んである。コンピュータを利用した精 密な物性予測によって、磁性体・超伝導における量子臨界 現象など物性物理学の基礎的な問題から、半導体デバイス 設計や燃料電池における電極反応など近い将来産業応用に 結びつくことが期待される応用問題に至るまで、広い範囲 において重要な成果が挙がっている。本センターは、デー タ創出・活用型マテリアル研究開発プロジェクトや「富岳」 プロジェクトなどを担う拠点として、「富岳」や物性研究所 共同利用スパコンを始めとする計算資源の活用を通じて、 これらの課題に組織的に取り組んでいる。さらに、コミュ ニティソフトウェア開発・普及のためのサイト MateriApps の開発・運用と博士課程人材の育成のために計算物質科学 高度人材育成・産学マッチングプログラム (MP-CoMS) を進 めている。 As symbolized by the Fugaku computer, massively parallel and exhaustive computation is actively used for solving problems in materials science in recent years. In fact, computer-aided science has been providing answers to many problems ranging from the most fundamental ones, such as critical phenomena in quantum magnets, superconductors, and superfluids, to the ones with direct industrial applications, such as semiconductor devices and electrode chemical reactions in batteries. Due to the recent hardware trends, it is now crucial to develop a method for breaking up our computational task and distribute it to many computing units. In order to solve these problems in an organized way, we, as the major contractor of several national projects such as Fugaku Computer Project and the DxMT project, coordinate the use of the computational resources available to our community, including Fugaku and ISSP supercomputers. In addition, we also operate the web site, MateriApps, which offers easy access to various existing codes in materials science, and in order to develop human resources for the doctoral program, we promote the Advanced Human Resource Development and Industry-Academia Matching Program for Computational Materials Science (MP-CoMS). センター長 尾崎 泰助 Leader OZAKI, Taisuke # 三澤研究室 Misawa Group ### 研究テーマ Research Subjects - 1 量子多体系を取り扱う数値計算手法の開発 Development of numerical methods for quantum many-body systems - 2 トポロジカル物質における量子輸送現象 Quantum transport phenomena in topological materials - 3 量子スピン液体・高温超伝導 Quantum spin liquid・High-Tc superconductivity - 4 強相関電子系に対するデータ駆動型研究 Data-driven research for strongly correlated electron systems 特任准教授 三澤 貴宏 Project Associate Professor MISAWA, Takahiro 量子多体系の典型例である固体中の強相関電子系では、高温超伝導・量子スピン液体に代表される新奇量子相が数多く発現する。これらの現象を支配している基礎学理を解明して、新現象・新機能を創出することは凝縮系物理学の大きな目標である。本研究室では、この挑戦的な課題に対して、最先端の理論手法とスーパーコンピュータを用いた大規模数値計算を駆使することで取り組んでいる。特に、第一原理計算と高精度量子格子模型解析を組み合わせた第一原理強相関計算手法の開発を行っており、この手法を用いることで、高温超伝導・量子スピン液体・相関トポロジカル相などの新奇量子相の研究を行っている。最近の研究例としては鉄系高温超伝導体の第一原理有効ハミルトニアンのデータ科学的解析、分子性固体における量子スピン液体の研究などがある。さらに、第一原理強相関計算手法を用いたデータ創出及びデータを利活用したデータ駆動型の研究も進めている。 In strongly correlated electron systems in solids, which are typical examples of quantum many-body systems, many exotic quantum phases, such as high-temperature superconductivity and quantum spin liquids, emerge. It is a grand challenge of condensed matter physics to elucidate a deep understanding of the physics behind these exotic phenomena and to predict new phenomena and functions based on the understanding. In our laboratory, we tackle this challenging issue by combining state-ofthe-art theoretical methods with large-scale numerical calculations using powerful supercomputers. In particular, we have developed an ab initio method for treating strongly correlated electron systems, which combines ab initio calculations with highly-accurate methods for solving quantum lattice models. By using this method, we have studied exotic quantum phases such as high-temperature superconductivity, quantum spin liquids and correlated topological phases. Recent examples of our work include the data analysis of ab initio effective Hamiltonians for iron-based superconductors and the study of quantum spin liquids in molecular solids. In addition, we are now conducting data-driven research using the ab initio method for strongly correlated electron systems. β -X[Pd(dmit)₂]₂ (Xはカチオン)の第一原理有効模型の解析を行った結果。第一原理計算で求めた反強磁性相(AF)と量子スピン液体相(QSL)のエネルギー差 $\Delta e = E_{QSL}$ - E_{AF} (壁面)、は $X = EtMe_3$ Sb での量子スピン液体発現を含む実験相図(底面)をよく再現している。 Results of the ab initio effective model analysis of $\beta^{*-}X[Pd(dmit)_2]_2$ (X represents a cation). From the ab initio calculations, we obtain the energy difference between the antiferromagnetic (AF) and quantum spin liquid (QSL) phases, $\Delta e = E_{QSL-E_{AF}}$ (shown at wall surface). We find that the theoretical results well reproduce the experimental phase diagram (shown at bottom surface) including the quantum spin liquid phase at $X = EtMe_3Sb$. 鉄系超伝導体の第一原理ハミルトニアンの微視的パラメータから構築された回帰モデルから得られた実験で得られた転移温度 (Tc^{exp}) と理論予測した転移温度 (Tc^{predict}) の比較。回帰モデルが実験結果をよく再現できていることがわかる。 Experimental $T_{\rm c}$ ($T_{\rm c}^{\rm exp}$) vs. predicted $T_{\rm c}$ ($T_{\rm c}^{\rm predict}$) obtained from the regression model, which is constructed from the microscopic parameters of ab initio Hamiltonians for iron-based superconductors. We can see the regression model reproduce the experimental results well. # 附属極限コヒーレント光科学研究センター **Laser and Synchrotron Research Center** 極限コヒーレント光科学研究センター (LASOR) では、 極短パルス、超精密レーザーや大強度レーザーなどの極限 的なレーザーおよび、シンクロトロン放射光による先端的 ビームラインを開発し、光科学と物質科学を探求している。 レーザー科学と放射光科学と両方を包括する国内外でもユ ニークな組織であり、両者の融合領域を創出している。こ れらの最先端光源を用いて、テラヘルツから軟X線までの 広いエネルギー範囲で、超高時間分解分光、超精密分光、 超高分解能光電子分光、スピン偏極分光、顕微分光、回折 や光散乱、イメージング、発光分光などの研究を行っている。 これらの極限的な光源や分光手法を用いて半導体、強相関 物質、有機物質、生体物質、表面、界面などの幅広い基礎 物性研究とともに、レーザー加工など、社会が求めている 学理の探求や産官学協調領域の創出をねらう。柏I、および II キャンパスでのレーザー開発・分光の他に、SPring-8や ナノテラスにおいて軟 X 線分光の研究を行っている。 The Laser and Synchrotron Research Centre (LASOR) is developing new lasers with extreme performance in ultra-precise, high-intensity and ultra-short pulse lasers. The state-of-the-art soft X-ray beamline is also being developed using synchrotron radiation. LASOR is responsible for advanced spectroscopy, such as high-resolution, time-resolved spectroscopy, diffraction or scattering imaging, using new coherent light sources based on laser and synchrotron technology over a wide spectral range from terahertz to X-ray. In LASOR, a wide range of materials sciences
for semiconductors, strongly correlated materials, molecular materials, surfaces and interfaces, and biomaterials will be studied, as well as industrial sciences such as laser processing using advanced light sources and advanced spectroscopy. The aim of LASOR is to integrate laser science and synchrotron radiation science. Most of the research activities on the development of new high-power lasers and their application to materials science are carried out at Kashiwa I and II campuses. On the other hand, experiments using synchrotron radiation are carried out at SPring-8 and NanoTerasu. センター長 小林 洋平 Leader KOBAYASHI, Yohei 副センター長 秋山 英文 Deputy Leader AKIYAMA, Hidefumi 副センター長 原田 慈久 Deputy Leader HARADA, Yoshihisa ## 板谷研究室 ### Itatani Group ### 研究テーマ Research Subjects - 1 位相制御された高強度極短パルスレーザーの開発 Development of phase-stable intense ultrashort-pulse lasers - 2 軟X線アト秒パルス発生と原子・分子・固体のアト秒分光 Generation of soft-X-ray attosecond pulse, attosecond spectroscopy of atoms, molecules, and solids - 3 強レーザー場中での超高速現象の観測と制御 Measurement and control of ultrafast phenomena in strong optical - 4 超高速軟 X 線分光法の開発 Development of ultrafast soft X-ray spectroscopy Professor ITATANI, Jiro 特任助教 水野 智也 Project Research A MIZUNO, Tomoya 特任助教 深谷 Project Research Associ FUKAYA, Ryo 高強度極短パルスレーザーの開発と、フェムト秒からア ト秒領域の超高速現象に関する研究を行っている。光源開発 に関しては、可視から中赤外領域での位相制御された高強度 極短パルス光源の開発と、気体・固体・液体媒質での高次高 調波発生を利用した多様な短波長パルス光源に関する研究を 行っている。また、チタンサファイアレーザーを超えた次世 代極短パルスレーザー光源を目指した光源技術の開発も進め ている。光源利用に関しては、アト秒軟X線パルスの超高速 分光応用、原子・分子・固体中での高強度光電場で駆動され た非線形光学現象に関する研究を主に行っている。位相制御 された高強度極短パルス光源を基盤技術とした波長変換によ り、テラヘルツから軟X線までをカバーした超高速分光が実 現可能であり、物質の非平衡状態における動的過程を様々な 自由度を通して実時間観測し、さらには光で制御することを 目指している。 We are working on the development of intense ultrashort pulse light sources and their applications in ultrafast spectroscopy on the femtosecond to attosecond time scale. In light source R&D, we focus on the generation of waveform-controlled intense optical pulses from the visible to the mid-infrared spectral range and the generation of shortwavelength ultrashort pulses using the physics of high-order harmonic generation in gases, solids and liquids. In addition, we are developing the building blocks of next-generation light sources to overcome the limitations of current Ti:sapphire laser-based technologies. Based on these novel light sources and techniques, we are developing attosecond soft X-ray spectroscopy and other ultrafast methods to probe fielddriven nonlinear processes in atoms, molecules, solids, and liquids. Our waveform-controlled intense light sources and related technologies will enable novel ultrafast spectroscopy covering an extremely broad spectral range from THz to soft x-rays. Our goal is to observe and control the ultrafast dynamics of non-equilibrium states of matter through multiple degrees of freedom. アト秒軟 X線パルスを用いた N_2O 分子の過渡吸収分光と、内殻励起に関与する エネルギー準位、観測されたサブサイクルの変調を受けた過渡吸収スペクトル。 Schematic of transient absorption spectroscopy of N2O molecule using attosecond soft x-ray pulses, energy levels involved in inner-shell excitation, and the observed transient absorption spectra. The observed ultrafast modulation is due to the tunnel ionization of the molecule in a core-hole state. (左)強レーザー場中での光電子の再散乱によって得られるキャリア・エンベロー プ位相依存性に依存した光電子スペクトル、(右)観測された光電子スペクトル から再構成された微分散乱断面積と理論との比較 (Left) Carrier-envelope phase dependence of the photoelectron spectra observed by rescattering of laser-accelerated photoelectrons. (Right) Comparison of the differential scattering cross section reconstructed from the observed phase-dependent photoelectron spectra. The good agreement indicates that quantitative information can be obtained from the high-energy rescattering phenomena https://www.issp.u-tokyo.ac.jp/maincontents/organization/labs/itatani_group.html ### 研究テーマ Research Subjects - 1 極低温超高分解能レーザー ARPES による非従来型超伝導の機 構解明 - Mechanisms of unconventional superconductivities investigated by ultralow-temperature and ultrahigh-resolution laser ARPES - 2 高次高調波レーザー時間分解 ARPES による光誘起相転移の機 構解明 - Mechanisms of photo-induced phase transitions investigated by $\ensuremath{\mathsf{HHG}}$ laser time-resolved ARPES - 3 先端レーザーを用いた高分解能・時間分解 ARPES 装置の開発 Developments of high-resolution/time-resolved ARPES systems using advanced lasers 助教 鈴木 剛 Research Associate SUZUKI, Takeshi 准教授 岡﨑 浩三 Associate Professor OKAZAKI, Kozo 専攻 Course 新領域物質系 Adv. Mat., Frontier Sci. 角度分解光電子分光は物質中の電子の運動量とエネルギーの分散関係 (バンド構造)を直接観測できる強力な実験手法である。本研究室では、最高エネルギー分解能 70 μeV、最低測定温度 1 K という世界最高性能を有するレーザー角度分解光電子分光装置を用いて、非従来型超伝導体の電子構造、超伝導ギャップ構造を直接観測することでその機構解明を目指している。また、フェムト秒レーザーをポンプ光、その高次高調波をプローブ光として用いる時間分解光電子分光では、非平衡状態におけるバンド構造の過渡特性も観測できる。本研究室では、高次高調波をプローブ光に用いた時間分解光電子分光装置を用いて、光誘起相転移の機構解明や光による物性制御を目指している。レーザー開発の研究室と協力することにより、先端レーザーを用いた光電子分光装置の開発・改良にも取り組んでいる。 Angle-resolved photoemission spectroscopy is a very powerful experimental technique that can directly observe a dispersion relation between momentum and energy (band structure) of the electrons in solid-state materials. In our group, we are aiming for understanding the mechanisms of unconventional superconductivity by direct observations of the electronic structures and superconducting-gap structures of unconventional superconductors by laser-based angle-resolved photoemission system with a world-record performance that achieves the maximum energy resolution of 70 µeV and lowest cooling temperature of 1K. In addition, by time-resolved photoemission spectroscopy utilizing a femtosecond laser as pumping light and its high harmonic as probing light, we can observe ultrafast transient properties of the band structure in a non-equilibrium state. We are aiming for understanding the mechanisms of photo-induced phase transitions and control of physical properties of materials by light by using time-resolved photoemission spectroscopy utilizing high harmonic laser as probing light. We are also developing and improving photoemission systems that utilizes advanced lasers in collaboration with the laser development groups. カゴメ超伝導体 $Cs(Va,Ta)_3Sb_5(T_c=5.2 \text{ K})$ のフェルミ面と超伝導ギャップ Fermi-surface map and superconducting gap of the Kagome superconductor $Cs(Va,Ta)_3Sb_5(\mathit{T_c}=5.2~\mathrm{K})$ 励起子絶縁体 Ta₂NiSe₅ における光誘起絶縁体 - 金属転移 Photo-induced insulator-to-metal transition in an excitonic insulator Ta_2NiSe_5 observed by HHG laser TRPES. a, b. Spectra before and after pump, respectively. # 木村研究室 Kimura Group ### 研究テーマ Research Subjects - 型精密加工・計測法を活用した高精度 X 線光学素子の開発 Development of high-precision X-ray optical devices using ultraprecision fabrication and measurement techniques - 2 先端光源を活用した新規 X 線顕微イメージング技術の開発 Development of new X-ray microscopy technology using advanced light sources - 3 軟 X 線顕微鏡による顕微物性イメージング Material property imaging with soft X-ray microscopy - 4 X線自由電子レーザーによる液中試料フェムト秒イメージング Femtosecond imaging of samples in liquids using X-ray free-electron lasers 助教 竹尾 陽子 Research Associate TAKEO, Yoko 准教授 木村 隆志 Associate Professor KIMURA, Takashi 専攻 Course 工学系物理工学 App. Phys., Eng. 本研究室では、X線自由電子レーザーや放射光、高次高調波といった先端 X線光源と超精密 X線光学素子を融合した、新たな顕微イメージング技術の開発に取り組んでいる。具体的には、大型放射光施設 SPring-8/SACLA での X線顕微鏡構築のほか、原子レベルの加工精度を持つ先端半導体製造プロセスを活用した X線光学素子の設計・作製、レンズレスイメージングのための計算アルゴリズムの開発を行っている。 また共同研究者とともに開発した X 線顕微鏡の活用にも積極的に取り組んでおり、ナノ粒子や磁性ナノ構造などの無機試料だけでなく、哺乳類細胞や海洋性プランクトンなど幅広く計測を行っている。対象を問わず、メゾスコピックな微細構造と物性の関係を高い空間的・時間的分解能で結びつけることで、新たなサイエンスを切り拓くことを目指している。 Our laboratory is engaged in the development of next-generation X-ray imaging technologies that combine state-of-the-art X-ray sources-such as X-ray free-electron lasers, synchrotron radiation, and high-order harmonics—with ultra-precise X-ray optical components. Our research includes the construction of advanced X-ray microscopes at large-scale synchrotoron radiation facilities such as SPring-8 and SACLA, the design and fabrication of X-ray optics using cutting-edge semiconductor manufacturing techniques with atomic-level precision, and the development of sophisticated computational algorithms for lensless imaging. In close collaboration with domestic and international research partners, we actively apply these technologies to a wide range of samples, including inorganic materials such as nanoparticles and magnetic nanostructures, as well as biological specimens like mammalian cells and marine plankton. By uncovering the relationship between mesoscopic structures and their physical or chemical properties with high spatial and temporal resolution, we aim to open up new frontiers in a variety of scientific fields, including materials science, nanotechnology, and life science. SPring-8 の BL07LSU に構築した軟 X 線タイコグラフィ装置 CARROT(Coherent Achromatic Rotational Reflective Optics for pTychpgrahy)。全反射ウォルターミラーを利用した光学系を導入することにより、様々な波長の軟 X 線で試料を50 nm 程度の分解能でイメージングすることが可能である。 Soft X-ray ptychography system CARROT (Coherent Achromatic Rotational Reflective Optics for pTychpgrahy). We constructed this achromatic soft X-ray imaging system with 50 nm spatial resolution at BL07LSU of SPring-8. タイコグラフィにより計測した哺乳類細胞の軟 X 線吸収 (上段)・位相像 (下段)。細胞内の微細構造を薄片化することなく透過観察することが可能である。 Soft X-ray transmission (upper) and phase (lower) images of a mammalian cell measured by ptychography. Intracellular structures can be observed without thinning the sample. # 小林研究室 Kobayashi Group ### 研究テーマ Research Subjects - 高強度超短パルスレーザーシステムの研究開発 Development of high-power ultrashort pulse laser systems - 2 レーザー加工の学理 Fundamental understanding on laser processing - Fundamental understanding on laser process 3 医療応用中赤外分子分光 - Precision spectroscopy of molecules for medical applications - 4 サイバーフィジカルシステム Cyber-Physical System 助教 中川 耕太郎 Research Associate NAKAGAWA, Kotaro 教授 小林 洋平 Professor KOBAYASHI, Yohei 専攻 Course 工学系物理工学 App. Phys., Eng. 最先端レーザーの研究開発とそれを用いた精密・高強度光科学の研究を行っている。特に光周波数コムおよびその応用手法の開発と、超短パルス・ハイパワーレーザーを用いたレーザー加工の学理の構築を中心課題としている。レーザー光源開発は希土類添加セラミックやファイバーの技術を基に、超高繰り返し、超高平均パワーのレーザーシステムを近赤外、中赤外、紫外、真空紫外の波長領域において展開する。超高繰り返しの方向では世界最小のカーレンズモード同期レーザーを保有する。フェムト秒レーザーをベースとした高輝度コヒーレント真空紫外光での光電子分光や呼気診断を目指した医療応用の中赤外超精密分子分光を行っている。レーザー加工の素過程となる光と物質の相互作用において、レーザー加工の学理構築に取り組んでいる。なぜものは切れるのか?を知りたい。 We are developing advanced
laser technologies and their applications. Both ultimate technologies of ultrashort pulse generations and ultra narrow-band laser generations were mixed, the optical frequency comb then was born. It opened up a new research area such as carrier-envelope-phase dependent phenomena, attosecond physics, and precision spectroscopy by using a femtosecond light source. It also realized the high-repetition and high-intensity physics. It could create wide field of applications in the physics, metrology, medical science, and astronomy. We are developing an Yb-fiber laser-base optical frequency comb, XUV frequency comb, and high-power fiber chirped pulse amplifier system for these applications. The high-repetition-rate laser system will be applied for a calibration of a spectrograph in an observatory or an arbitrary waveform generation in an optical field, or a breath diagnosis. In addition, we are studying the fundamental processes of laser processing and bridging the gap between them and industrial applications. We would like to know "How is a material cut?" 光周波数コムによる原子分光。自作超高エネルギー分解分光器と超高繰り返しモード同期レーザーとの組み合わせにより縦モードが分離された分光が可能となった。図はメタステーブル He の縦モード分解分光の例。 Optical frequency comb based ultra-high precision spectroscopy. The combination of ultra-high repetition-rate laser and ultra-high resolution spectrograph makes it possible to resolve each comb tooth to detect the meta-stable He atom. レーザー加工過程のサブピコ秒時間分解測定 Measurement of laser processing dynamics with sub-picosecond time resolution. ## 近藤研究室 Kondo Group ### 研究テーマ Research Subjects - 1 極限レーザーを励起光源とする超高分解能角度分解光電子分 光装置の開発 - Development of a laser-excited ARPES system with ultra-high energy resolution $% \left(1\right) =\left(1\right) \left(\left($ - 2 角度分解・スピン分解・時間分解光電子分光で見る超伝導や トポロジカル量子相 - Superconductivity and topological quantum phase investigated by angle-, spin-, and time-resolved photoemission spectroscopy - 3 放射光を利用した光電子分光で研究する強相関電子系物理 Strongly correlated physics studied by photoemission with synchrotron radiation 准教授 近藤 猛 Associate Professor KONDO, Takeshi 専攻 Course 理学系物理学 Phys., Sci. 固体中の電子が描くバンド構造は、あらゆる電子物性を理解する上での基礎を与える。角度分解光電子分光は、光で励起する光電子を角度及びエネルギーの関数としてイメージングすることでバンド構造を可視化する強力な実験手法である。この技術をベースとして、バンドが持つスピン構造を同定したり、パルス光で制御する非平衡ダイナミクスをフェムト秒スケールで観測することで、多彩な電子物性がバンド構造を通して見えてくる。当研究室では、このような卓越した光電子分光技術を駆使して、(高温)超伝導体、重い電子系や電子相関系物質、トポロジカル量子相、固体表面や薄膜で制御する量子井戸構造などの電気磁気物性を、直接観察で得られるバンド構造を舞台に研究する。さらには、極限レーザー光源及びそれを用いた高精度な光電子分光装置を開発し、フェルミ準位極近傍の微細な電子構造(エネルギーギャップや素励起との相互作用)を解明する。 The momentum-resolved band structure provides fundamental information to understand the electronic properties of materials. The angle-resolved photoemission spectroscopy (ARPES) is a powerful technique to visualize the band structure by mapping the intensities of photoelectrons as a function of angle and energy. With the spin-resolved technique, we can also identify the spin-polarized character of the band. In addition, the time-resolved ARPES realized with a pump-probe technique can track the reordering process of electron system from its nonequilibrium state. In our laboratory, we utilize these various ARPES techniques and study the following phenomena: nonconventional superconductors, heavy fermions, strongly correlated systems, topological quantum phases, and quantum well states. Furthermore, we develop a new ARPES machine capable of achieving both the lowest measurement temperature and the highest energy resolution in the world by innovating a ³He cryostat and a laser source. The state-of-art equipment will enable us to identify even a subtle electronic feature close to the Fermi level, such as an energy gap and a mode-coupled dispersion, which is typically tied to exotic behaviors of conduction electrons. (a) 銅酸化物高温超伝導体 $Bi_2Sr_2CuO_{6+d}$ の結晶構造。(b) 光電子アナライザー。(c) 角度分解光電子分光実験の模式図。(d) バンド分散のスナップショット。(e) バンド構造の全体図。(f) フェルミ面周りで描く超伝導と擬ギャップの競合関係。(g) 超伝導転移温度 (T_c) より高温 (黒線) と低温 (赤線) で測定したフェルミ面周りのスペクトル。(h) (g) で示すスペクトルの T_c 上下での差分。超伝導成分が赤で塗られており、(f) で模式的に示す赤の領域と対応する。 (a)Crystal structure of $Bi_2Sr_2CuO_{6+d}$ high- T_c superconductor. (b) ARPES analyzer. (c) Diagram of ARPES experiment. (d) Snapshot of dispersion image. (e) Whole band structure. (f) Competition between superconducting gap and pseudogap. (g) Spectra around Fermi surface below (red) and above (black) superconducting transition temperature ($T_c = 35$ K). (h) Difference between the curves in (g). (h) Coherent spectral weight is painted with a red color, which is corresponding to the red region represented in (f). ### 原田研究室 ### Harada Group ### 研究テーマ Research Subjects - 1 水溶性液体の電子状態とミクロ不均一性、固液界面の相互作用に 関する研究 - Electronic structure analysis of aqueous solutions to study microheterogeneity and interaction at solid-liquid interfaces $\,$ - 電池触媒、電池電極の表面反応解析、電気化学反応、光触媒反応 解析、金属タンパク質の機能解析のためのその場分析手法の開発 Development of in situ soft X-ray spectroscopy for surface reaction of battery catalysts and electrodes, electrochemical reaction, photocatalytic reaction and functionality of metalloproteins - 3 強相関物質における素励起(結晶場励起、スピン励起、マグノン励起、 電荷密度波励起、軌道波励起)の直接観測とその成因の研究 Study on the origin and observation of elementary excitations (crystal field excitation, spinon, magnon, charge density wave, orbiton) in strongly correlated materials - 軟X線発光分光の超高エネルギー分解能化と時間分解分光のため の基礎光学研究 - Basic study on ultrahigh energy resolution optics for soft X-ray emission and time-resolved spectroscopy 専攻 Course 新領域物質系 Adv. Mat., Frontier Sci. 当研究室では、世界最高輝度の放射光X線源の一つである SPring-8 と NanoTerasu において'軟X線'と呼ばれる光を用 いて新しい分光法を開拓し、物質の電気的、磁気的性質、光 学応答を司る電子状態をその成因に遡って調べる研究を行っ ている。特に光散乱の一種である軟X線発光分光に着目し、 強相関物質における素励起(結晶場励起、スピン励起、マグ ノン励起、電荷密度波励起、軌道波励起など)の直接観測と その成因の研究、水溶性液体、固液界面/気液界面の電子状 態とミクロ不均一性の観測、燃料電池触媒・二次電池電極の 表面反応解析、光触媒反応解析のためのその場(オペランド) 分析装置の開発、金属タンパク質の電子状態解析など、軟X 線発光分光を適用しうるあらゆる物質群を研究対象としてい る。また基礎光学研究として軟X線吸収・発光分光の超高性 能化のためのR&D、および木村隆志研究室と共同して軟X 線顕微分光イメージングの応用研究を行っている。 We explore the origin of the electronic structure of materials responsible for their electronic, magnetic and optical property using intense and energy tunable synchrotron X-ray source: SPring-8 and NanoTerasu, one of the most brilliant synchrotron facilities in the world. We have developed novel spectroscopies for material science in 'soft' X-ray region. We are leading the world's soft X-ray emission spectroscopy, a kind of light scattering powerful for electronic structure analyses of liquids and operando spectroscopy of a variety of catalysts. Our topics include a study on elementary excitations (crystal field excitation, spinon, magnon, charge density wave, orbiton etc.) in strongly correlated materials, electronic structure analysis of aqueous solutions, interaction at solid-liquid and gas-liquid interfaces, the surface reaction of fuel cell battery catalysts and rechargeable battery electrodes, electronic structure analysis of reaction center in metalloproteins, electrochemical and photocatalytic reactions. We also explore basic study on high performance soft X-ray absorption and emission spectroscopy as well as advanced application of soft X-ray spectroscopic imaging in collaboration with Prof. Takashi Kimura laboratory. 助教 木内 久雄 特任助教 島村 勇徳 Project Research Associate SHIMAMURA, Takenori 当研究室が SPring-8 で独自に開発した 50 meV の高エネルギー分解能を持つ角 度分解軟X線発光分光装置。2024年4月よりNanoTerasuで稼働している。 Angle-resolved soft X-ray emission spectrometer with high energy resolution of 50 meV, originally developed by our laboratory at SPring-8, which is moved and operated at NanoTerasu from April 2024. 極めて均一かつナノメートルサイズの穴を持つ機能性イオン液晶膜が、特定の イオンを選択的に透過するために「イオンを取り巻く水の水素結合構造を認識 している」ことが軟 X 線発光分光で明らかとなった。 Soft X-ray emission spectroscopy has revealed that functional ionic liquid crystalline membranes with extremely uniform, nanometer-sized pores recognize the "hydrogenbonded structure of water surrounding the ions" in order to selectively permeate specific https://www.issp.u-tokyo.ac.jp/maincontents/organization/labs/harada_group.html # 松田巌研究室ュ ### I. Matsuda Group ### 研究テーマ Research Subjects ■ オペランド X 線実験による表面上分子・キャリアダイナミクスの研究 $\ensuremath{\textit{Operando}}\xspace^{-}$ X-ray experiments to study molecule and carrier dynamics at surfaces - 2 X線自由電子レーザーを用いた非線形 X線分光の研究 Study of non-linear X-ray spectroscopy by X-ray free electron laser - 3 単原子層材料の設計と合成 Design and synthesis of novel functional materials of the monatomic layer - 4 AI ロボットを用いた X 線分光実験技術の開発 Technical developments of X-ray spectroscopy experiments using AI 助教 堀尾 眞史 Research Associate HORIO, Masafumi 教授 松田 巌 Professor MATSUDA, Iwao 専攻 Courses 理学系物理学理学系化学 Phys., Sci. Chem., Sci. 高輝度放射光や X 線レーザーから発生する真空紫外線~軟 X 線を用いた吸収分光・光電子分光・非線形分光の計測技術 を開発し、自作装置 (左図)を使って材料の動作下における 状態変化を「その場」観測するオペランド実験を実施している。放射光施設では固気界面の化学状態を直接調べることができる光電子分光測定を超高真空から大気圧条件下まで実現し、モデル物質から実在材料の物性と機能性を明らかにしている。さらに研究室では新たな測定原理の開拓に加えて、AI ロボット技術の導入も推進している。対象としている物質群は主にディラック電子系を有した単原子層や強相関物質の表面/界面系であり、それぞれの電子物性および機能性の研究を行っている。学理とインフォマティクスを元に、我々の精密な計測データで情報をフィードバックさせながら新規材料の設計と合成を行い、その社会実装を目指している。 We have developed measurement techniques for absorption spectroscopy, photoelectron spectroscopy, and nonlinear spectroscopy using vacuum ultraviolet rays to soft X-rays, generated from high-brilliant synchrotron radiation (SR) and X-ray lasers. We have focused on operando experiments to make in situ observations of a material during its operation. At the SR facility, we have realized photoelectron spectroscopy measurements under conditions from ultrahigh vacuum to ambient pressure, unveiling properties and functionalities of the model and actual systems (See the Figures). Our instrumental developments are based on pioneering new measurement principles and, recently, they are combined with the AI robot technology. Our material targets are mainly monatomic layers with the exotic Dirac electrons and surface/interface systems of strongly correlated materials. Based on the fundamental theories and informatics, we design and synthesize novel materials while feeding back information using our precise measurement data. We aim to implement our functional materials in society
オペランド実験ステーション:雰囲気光電子分光装置。放射光施設に設置されており、触媒や電池など様々な化学反応の解明に使用される。表面化学反応の中間体をリアルタイムで捉えることができる。 An *operando* experiment station of ambient-pressure X-ray photoelectron spectroscopy, developed at the synchrotron radiation facility. The instrument probes intermediates during chemical reaction at the surface in real time. 本研究室で達成した完全大気圧下での軟 X 線光電子分光測定 (金箔の Au 4f 内殻 準位)。 The real ambient pressure soft X-ray photoelectron spectrum, measured and achieved at the laboratory (Au 4f core-levels of a Au foil). # 松永研究室 ### Matsunaga Group ### 研究テーマ Research Subjects - 1 テラヘルツ 中赤外超短光パルス技術開発 Development of ultrafast pulsed laser technique in terahertz-mid - 2 光電場で駆動された多体系の超高速ダイナミクス Ultrafast dynamics of many-body systems driven by light field - トポロジカル半金属における非線形応答と非平衡現象 Nonlinear responses and nonequilibrium phenomena in topological - 4 テラヘルツ高速スピントロニクス High-speed terahertz spintronics 理学系物理学 Phys., Sci. 室谷 悠太 特任助教 湯本 Project Research Associate YUMOTO, Go テラヘルツから中赤外・近赤外・可視域にわたるコヒーレ ント光源を用いて、物質の光応答と光電場によって誘起され る非平衡状態の性質を調べている。特にテラヘルツ周波数帯 のフォトンエネルギーは数 meV 程度であり、物性物理にお いて重要なフェルミ面近傍の電磁応答を調べることができる 重要な実験手法となっている。さらに近年開発された極めて 高い電場尖頭値を持つ高強度テラヘルツ波を駆使することで、 低エネルギーの素励起を共鳴的に強く励起する、あるいは物 質中の素励起よりもさらにエネルギーの低い光電場による非 共鳴的励起によってコヒーレントな相互作用を調べることが 可能である。テラヘルツ発生及び検出技術と非線形分光測定 手法を開発するとともに、超伝導や反強磁性のような多体系 の秩序に現れる集団励起や、トポロジカル半金属において巨 大に現れる非線形応答、高速スピン輸送現象など、非平衡状 態で現れる物質の新たな状態を調べ、その機能性を明らかに する。 高強度テラヘルツパルス発生および位相安定中赤外パルス発生に用いるフェム ト秒再生増幅パルスレーザーシステム Regenerative-amplified femtosecond pulse laser system for intense terahertz wave generation and phase-locked mid-infrared light generation We use coherent light sources based on ultrafast pulsed laser technology to generate terahertz wave, mid- and near-infrared, and visible light to study the dynamics of light-induced nonequilibrium processes in a variety of materials. Particularly terahertz spectroscopy can reveal low-energy electromagnetic responses of materials on the range of millielectronvolts, which include crucial details for the dynamical motions of electron, phonon, or spin degrees of freedom in condensed matter physics. A novel route for optical control of materials by strong resonant or off-resonant excitation by light field has also been made possible by recently discovered powerful terahertz pulse production technology. We explore superconductivity or antiferromagnetism, gigantic nonlinearity of topological semimetals, and high-speed spin transport phenomena, in addition to the development of phase-stable terahertz generating and detection techniques and novel nonlinear spectroscopy schemes. テラヘルツ電磁応答および Hall 伝導測定に用いる透過・反射・偏光回転精密計 測システム Transmission, reflection, and polarization rotation spectroscopy system for terahertz electromagnetic response and Hall conductivity measurements ## 軌道放射物性研究施設 / 柏(E棟)・播磨(SPring-8内)・仙台(ナノテラス内) Synchrotron Radiation Laboratory / Kashiwa (E-building) • Harima (in SPring-8) • Sendai (in NanoTerasu) 軌道放射物性研究施設(SOR 施設)は高輝度放射光や軟 X線レーザーを利用した先端物性研究や実験技術の開発研究を播磨、仙台、柏の 3 拠点で行っている。 播磨オフィスでは、高輝度放射光施設 SPring-8 で開発・運用してきた世界最高性能の高速偏光スイッチング軟 X 線アンジュレータビームラインを 2022 年度に理研に移管し、現在は理研と共同で軟 X 線分光イメージングステーションの R&D を行っている。また SPring-8 に隣接した X 線自由電子レーザー施設 SACLA では非線形 X 線光学の研究分野を開拓し、その学理を探究すると共に新たな分光法としての技術開発を行っている。 仙台オフィスは 2022 年 11 月に開室し、東北大学青葉山新キャンパス内にて整備が進む新しい 3 GeV X線光源施設NanoTerasuに雰囲気光電子分光ステーション、高分解能軟 X 線発光分光ステーション、3 次元ナノ ESCA ステーションを移設して測定技術のさらなる高度化を図り、2024 年度より運用を開始している。 柏の物性研 E 棟では LASOR レーザーグループとの連携で 高次高調波発生によるレーザー光源を用いたスピン・時間・ 角度分解光電子分光装置及び 2 次元角度・時間分解光電子分 光装置を整備し、共同利用に供している。 The Synchrotron Radiation Laboratory (SRL) advances novel materials research by developing soft X-ray spectroscopic techniques using the high-brilliance synchrotron radiation source and soft X-ray lasers at three sites, Harima, Sendai, and Kashiwa. In the Harima office, the world's highest performance fast polarizationswitching soft X-ray undulator beamline, developed and operated until 2022, was transferred to RIKEN, and R&D of a soft X-ray spectroscopic imaging station is conducted in collaboration with RIKEN SPring-8. At the X-ray free electron laser facility, SACLA, nonlinear X-ray spectroscopy was developed and the updates have been carried out. The Sendai office opened from November 2022, and ambient pressure photoemission spectroscopy, three-dimensional nanoESCA, and high-resolution soft X-ray emission spectroscopy stations have been transported to the new 3GeV X-ray source facility NanoTerasu, which is being built at the new Aobayama campus of Tohoku University. These experimental stations have been upgraded and have been in operation since FY2024. At Kashiwa campus, there are two end-stations of photoemission spectroscopy in the E-building that have been available for the joint-research program. One station is dedicated to the spin-, time-, and angle-resolved photoemission spectroscopy and the other is to the two-dimensional angle- and time-resolved photoemission spectroscopy. The light source is a laser that is based on the high-harmonic generation and it is operated in collaboration with the LASOR laser group. 施設長 原田 慈久 Leader HARADA, Yoshihisa 副施設長 松田 巌 Deputy Leader MATSUDA, Iwao ### 共通施設 ### **Supporting Facilities** 物性研究所には研究活動を円滑に進めていくための共通施設が設けられている。低温実験に不可欠な液体へリウムや液体窒素を製造・供給する低温液化室、様々な機械工作を行う工作室、X線装置や放射性試料の管理を行う放射線管理室、本や雑誌を多数取り揃え、科学文献や情報の供覧・管理を行う図書室などがある。2022年から微細加工等を行う量子物質ナノ構造ラボが開設され、さらに充実した。 ISSP provides various facilities to support research activities such as the cryogenic service laboratory for supplying liquid helium and liquid nitrogen, the machine shop for various machining, and the radiation safety laboratory for safety in experiments that utilize X-ray, γ -ray and radioactive materials, and the library. In addition, by opening the Laboratory of Nanoscale Quantum Materials in 2022, ISSP has enriched our capacity for research and experimentation including nanofabrication among others. ### 量子物質ナノ構造ラボ Laboratory of Nanoscale Quantum Materials 運営委員長 橋坂 昌幸 助教 遠藤 彰 技術専門職員 橋本 義昭 Chairperson : HASHISAKA, Masayuki Research Associate : ENDO, Akira Technical Specialist : HASHIMOTO, Yoshiaki 量子物質ナノ構造ラボでは、所内外で合成された新奇物質を微細加工してデバイス化し、所内の様々な先端計測と結びつけ、量子物性研究を推進することをミッションとしている。ラボスタッフは随時加工相談を受け付けてユーザーへのアドバイスや講習を行う。所内のユーザーは講習を受けることで自ら各装置を利用できる。所外のユーザーも共同利用で来所して自ら各装置を利用できる。 Our goal is to promote solid-state physics research by fabricating novel materials into micro- or nanoscale devices and linking them to various advanced measurement technologies at ISSP. The laboratory staff is available for consultation on fabrication processes and provides advice and training to users. Users within the institute can use the equipment by themselves after appropriate training. Users outside the institute can also use the equipment under the joint-research program. #### 主要設備 電子線リソグラフィー装置、マスクレスフォトリソグラフィ装置、 集束イオンビーム加工装置、イオンエッチング装置、原子間力顕微鏡、 走査型電子顕微鏡、レーザー顕微鏡、ワイヤーボンダー装置、電子線蒸着装置、 スパッタ蒸着装置、原子層堆積装置、希釈冷凍機 #### Main Facilities Electron beam lithography system, Maskless photolithography system, Focused ion beam processing system, Dry etching system, Atomic force microscopy system, Scanning electron microscopy system, Laser microscopy system, Wire bonding system, Electron beam deposition system, Sputtering deposition system, Atomic layer deposition system, Dilution refrigerator system 電子線リソグラフィー装置 (エリオニクス)。最高加速電圧は75 kV。ビーム径は2 nm。 Electron beam lithography system (Elionix). The highest acceleration voltage is 75 kV. The beam diameter is 2 nm. ### 低温液化室 Cryogenic Service Laboratory 低温委員長 徳永 将史 Chairperson: TOKUNAGA, Masashi 技術専門職員 土屋 光 Technical Specialist : TSUCHIYA, Hikaru 技術専門職員 鷺山 玲子 -般技術職員 **佐々木 貴子** Technical Associate: SASAKI, Takako Technical Specialist : SAGIYAMA, Reiko 低温液化室は液体へリウムと液体窒素の供給、および低温技術に関するサービスや柏キャンパス全体の高圧ガスボンベの管 理を行っている。液体ヘリウムは研究者や学生の物性研究のために供給される。蒸発したヘリウムガスを回収し、精製して再 液化する。2024 年度の液体ヘリウムの生成量と供給量はそれぞれ約 203,470 L、130,421 L である。液体窒素は外部より購入 し、供給している。2024年度の液体窒素の使用量は721,612 Lとなっている。 Cryogenic Service Laboratory supplies liquid helium and liquid nitrogen, provides general services concerning cryogenic techniques, and manages high-pressure gas cylinders for the researchers and the students in Kashiwa Campus. The laboratory has its own liquefiers to produce liquid helium from the evaporated helium gas that is recovered and purified for recondensing. The recondensed liquid helium is transferred from a 10,000 L storage vessel to various small storages for users by using a centrifugal immersion pump system. The liquid nitrogen is purchased from outside manufacturer. In the fiscal year 2024, liquid helium of 203,470 L was produced, of which 130,421 L was supplied to users, and liquid nitrogen of 721,612 L was supplied. ### 主要設備 ### ヘリウム液化装置 I (リンデ) ヘリウム液化装置Ⅱ(リンデ) 液体ヘリウム貯槽 液体窒素貯槽 回収用ヘリウムガス圧縮機 遠心式ヘリウム汲上ポンプ ### Main Facilities | Helium liquefier system (Linde)
Helium liquefier system (Linde) | 200 L/hr
233 L/hr | |---|------------------------| | Liquid helium storage vessel | 10,000 L | | Liquid nitrogen storage tanks | 20,000 L | | Heloum gas recovery compressor | 190 m ³ /hr | | Centrifugal liquid helium pump system | 20 L/min | ### ヘリウム再液化事業 世界的なヘリウム需要の高まりによる学術機関への影響を緩和するため、物性研が 所有するヘリウム液化装置の利用を学外にまで拡大した再液化事業を 2019年より開 始した。持ち込まれたヘリウムガスの精製・再液化を行い、液体ヘリウムを提供する。 これにより、限られた資源であるヘリウムの回収・精製・再液化が広がることを期待 ### Helium Liquefying Service The continuous increase of the world-wide demands of the scarce natural gas of helium causes the repeated crises in obtaining helium gas for academic institutions, requiring actions for the promotion of recycling helium gas. Since 2019, Cryogenic Service Laboratory opens the use of the helium liquefier system for business outside the University of Tokyo. The helium gas brought by external users is liquefied after purifications, providing liquid helium for the external users. This service is expected to advance the recycle of helium gas that is otherwise vented to air. ヘリウム液化機、貯槽及び遠心汲み上げポンフ Helium liquefier, storage, and transfer system ### 工作室 Machine Shop 工作委員長 金道 浩一 特任専門職員 川口 孝志 Project Specialist:
KAWAGUCHI, Koushi 一般技術職員 坂 遥希 Technical Associate : SAKA, Haruki 学術専門職員 降幡宏 Chairperson : KINDO, Koichi 技術補佐員 村貫 静二 Project Academic Specialist: FURIHATA, Hiroshi Technical Staff: MURANUKI, Seiii 工作室は、研究上緊急を要する工作物の加工、研究用の特色ある装置と部品の製作 及びその改良、そして装置設計の相談と助言を行っている。また、研究者自らが研究に 必要な機械工作を行うための研究者工作室も設置されている。 The machine shop consists of a metal shop and a researcher's machine shop, which are equipped with various facilities for designing metal. They supply researchers required various original devices and instruments. 主要設備 機械工作室 : 5 軸制御マシニングセンター、NC 旋盤、操作フライス盤 研究者工作室 : 万能旋盤、精密小型旋盤、フライス盤、ボール盤 Main Facilities Five-Axis Universal Machining Center, Numerically Controlled Lathe, Numerically Controlled Milling Machine Researcher's Machine Shop: Universal Lathes, Precision Lathes, Milling Machine ### 放射線管理室 Radiation Safety Laboratory 放射線管理委員長 山浦 淳一 特任専門職員 野澤 清和 Chairperson : YAMAURA, Jun-ichi Project Specialist : NOZAWA, Kivokazu 放射線管理室は、物性研究所における放射性物質(U 等 核燃料物質を含む)や放射線発生装置(X 線装置を含む)の取扱において、放射線取扱者の放射線障害を防止し、安全を確保することを目的として設置されている。そのため、放射線取扱に関わる全所的な放射線管理業務として、放射性物質や放射線発生装置の新規使用、変更及び廃止に伴う法律手続き、監督官庁に提出する放射線管理報告書等の作成、放射線管理区域の線量測定、X 線装置等の定期検査の実施及び放射線取扱者の被ばく線量や特別健康診断の記録、放射線取扱者の教育訓練等を行っている。また、当室には、U、Th などの非密封核燃料物質や ²²Na 密封線源を用いた研究などができる実験室や各種放射線(X 線を含む)検出器を備えている。 The aims of this laboratory are to protect researchers from irradiation due to radioactive sources, X-rays, γ -rays and so on and to provide rooms for radiation experiments and radiochemical operations by use of unsealed U, Th and sealed 22 Na sources. Various types of survey-meters are provided. #### 主要設備 化学実験室(非密封核燃料物質を解放で扱える物性研究所唯一の実験室)、ポジトロン実験室(22 Na 密封線源を用いた低速ポジトロンビームによる実験が行える)、熱蛍光線量計、Ge 半導体検出器、 α 線検出器、液体シンチレーションカウンター、各種サーベイメーター等、汚染検査室(ハンドフットクロスモニターによる汚染の確認) #### Main Facilities The rooms for radiation experiments and radiochemical operations (unsealed U, Th and sealed ²²Na source), various types of surveymeters, and, 7ch hand-foot-clothing monitor. ハンドフットクロスモニター The 7ch hand-foot-clothing monitor ### 図書室 Library 物性研究所図書室は、所内のみならず全国の共同 利用研究者の研究・教育活動に資するべく、多様 な物性科学に関する学術雑誌・図書を収集し、利 用に供している。電子書籍の収集にも注力してい る。 The ISSP Library collects journals, books, and, more recently, e-books on diverse condensed matter physics to support research and educational activities for joint-use and joint-research, as well as internal research in ISSP. #### 国際交流室 International Lieson Office 国際交流室では、物性研究所の国際交流・国際化推進に向けた支援を目的として、外国人客員所員制度等の国際連携制度や国際ワークショップの運営支援、英文での情報発信、外国人研究員の来日支援などを行っている。 To promote the international collaborative research and the internationalization of the Institute, the International Liaison Office assists in administrating ISSP International Collaboration Programs that include the visiting professorship program and ISSP international workshops. ### 情報技術室 Information Technology Office 情報技術室では、物性研究所 LAN および WWW サーバ(物性研ホームページ)他の各種サーバの 管理運用を行い、大学院生を含めた全所内ユーザ に提供している。 Information Technology Office operates the local area network in ISSP, and WWW servers for the ISSP home page (https://www.issp.u-tokyo.ac.jp), and it provides other servers to support all the users in ISSP. ### 学生・教職員相談室 Counseling Services 学生・教職員相談室では、個々の相談に応じてさまざまな対応を行い、解決策を探る手伝いを行っている。 A broad array of counseling and referral services are provided to students, faculties and staffs. #### 広報室 Public Relations Office 広報室は、物性研究所の研究成果やアクティビティ を広く一般に情報発信する業務を行っている。 The Public Relations Office is responsible for disseminating information about the research results and activities of the ISSP to the general public. ### ストックルーム Stock Room ストックルームは、回路部品、真空部品など実験 に共通して必要とされる消耗品、その他文房具な どの共通物品をそろえている。 Stock room supplies stationery and parts that are commonly used in research and experiments.