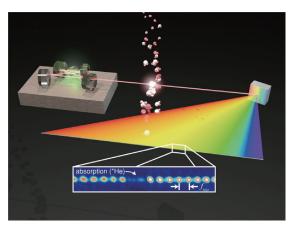

小林研究室 Kobayashi Group

研究テーマ Research Subjects

- 高強度超短パルスレーザーシステムの研究開発 Development of high-power ultrashort pulse laser systems
- 2 レーザー加工の学理
- Fundamental understanding on laser processing
- 3 医療応用中赤外分子分光
 Precision spectroscopy of molecules for medical applications
- 4 サイバーフィジカルシステム Cyber-Physical System

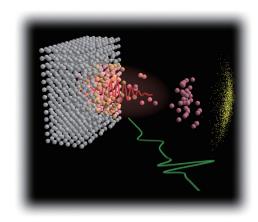
助教 中川 耕太郎 Research Associate NAKAGAWA, Kotaro

教授 小林 洋平 Professor KOBAYASHI, Yohei


専攻 Course 工学系物理工学 App. Phys., Eng.

最先端レーザーの研究開発とそれを用いた精密・高強度光科学の研究を行っている。特に光周波数コムおよびその応用手法の開発と、超短パルス・ハイパワーレーザーを用いたレーザー加工の学理の構築を中心課題としている。レーザー光源開発は希土類添加セラミックやファイバーの技術を基に、超高繰り返し、超高平均パワーのレーザーシステムを近赤外、中赤外、紫外、真空紫外の波長領域において展開する。超高繰り返しの方向では世界最小のカーレンズモード同期レーザーを保有する。フェムト秒レーザーをベースとした高輝度コヒーレント真空紫外光での光電子分光や呼気診断を目指した医療応用の中赤外超精密分子分光を行っている。レーザー加工の素過程となる光と物質の相互作用において、レーザー加工の学理構築に取り組んでいる。 なぜものは切れるのか?を知りたい。

We are developing advanced laser technologies and their applications. Both ultimate technologies of ultrashort pulse generations and ultra narrow-band laser generations were mixed, the optical frequency comb then was born. It opened up a new research area such as carrier-envelope-phase dependent phenomena, attosecond physics, and precision spectroscopy by using a femtosecond light source. It also realized the high-repetition and high-intensity physics. It could create wide field of applications in the physics, metrology, medical science, and astronomy.


We are developing an Yb-fiber laser-base optical frequency comb, XUV frequency comb, and high-power fiber chirped pulse amplifier system for these applications. The high-repetition-rate laser system will be applied for a calibration of a spectrograph in an observatory or an arbitrary waveform generation in an optical field, or a breath diagnosis.

In addition, we are studying the fundamental processes of laser processing and bridging the gap between them and industrial applications. We would like to know "How is a material cut?"

光周波数コムによる原子分光。自作超高エネルギー分解分光器と超高繰り返しモード同期レーザーとの組み合わせにより縦モードが分離された分光が可能となった。図はメタステーブル He の縦モード分解分光の例。

Optical frequency comb based ultra-high precision spectroscopy. The combination of ultra-high repetition-rate laser and ultra-high resolution spectrograph makes it possible to resolve each comb tooth to detect the meta-stable He atom.

レーザー加工過程のサブピコ秒時間分解測定

Measurement of laser processing dynamics with sub-picosecond time resolution.

