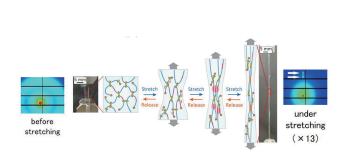
真弓研究室 Mayumi Group

研究テーマ Research Subjects

- 高強度高分子材料の強靭化メカニズムの解明 Toughening mechanism of tough polymeric materials
- 2 中性子・X線小角散乱法を用いた多成分系高分子・ソフトマター 材料の構造解析
 - Structure of multi-component polymer and soft matter systems by small-angle neutron/X-ray scattering
- 3 中性子準弾性散乱法を用いた多成分系高分子・ソフトマター 材料のダイナミクス解析
 - Dynamics of multi-component polymer and soft matter systems by quasi-elastic neutron scattering

助教 小田 達朗 Research Associate ODA, Tatsuro


准教授 真弓 皓一 Associate Professor MAYUMI, Koichi

専攻 Course 新領域物質系

Adv. Mat., Frontier Sci.

本研究室では、高分子をはじめとしたソフトマターの物性発現機構の解明を目指している。例えば、近年ナノ・分子レベルでの構造制御により高分子材料の機械強度は飛躍的に向上しつつあり、そのような高強度高分子材料は、人工関節や人工血管などの医療材料、ソフトロボット用のアクチュエーター、車・飛行機などに用いる構造材料としての応用が期待されている。我々は、高強度高分子材料に対して、中性子・X線小角散乱法および中性子準弾性散乱法によって変形下におけるナノ構造・ダイナミクスの計測を行っている。高分子材料は多成分で構成されていることが一般的であるが、中性子散乱法を用いると、重水素化ラベリングによって各構成要素を選択的に観察することが可能となる。散乱法によって明らかにされた階層構造・ダイナミクスとマクロな力学・破壊挙動との相関を解明するとともに、新規材料設計指針の探索を行っている。

The research goal of our group is to understand molecular mechanisms for macroscopic properties of soft materials. One of our targets is to understand toughening mechanisms of polymeric materials. Recently, the fine control of nano structure has significantly improved the mechanical toughness of polymer-based materials. The tough polymeric materials are expected to be applied for biomaterials, soft robots, and structural materials for automobiles and airplanes. To reveal molecular mechanisms of their macroscopic mechanical properties, we study nano-structure and dynamics of the tough polymeric materials under deformation by means of in-situ light, X-ray, and neutron scattering measurements. Especially, small-angle and quasi-elastic neutron scattering measurements with deuterium labelling enable us to observe separately each component in multi-component systems. By combining the nano-scale structure/dynamics measurements with macroscopic mechanical tests and molecular dynamics simulations, we aim to establish molecular understandings of toughening mechanisms for polymeric materials and discover novel molecular designs for tough materials.

self-reinforced gel

Conventional gel

break

伸長すると高分子鎖が結晶化し、鎖の破断を防ぐ自己補強ゲルを開発した。 この伸長誘起結晶は、力を取り除くと消失し、自己補強ゲルは元の状態まで復元する。

We have developed self-reinforced gels in which polymer chains are crystallized under stretching. The crystalline domains disappear immediately after the strain is released. The reversible strain-induced crystallization simultaneously realizes high toughness and rapid recoverability under repeated deformation.

通常の高分子ゲルの場合、亀裂を入れた試験片を引っ張ると、すぐに亀裂が進展して、破断してしまう。一方で、自己補強ゲルでは、亀裂の周辺において高分子鎖が引き延ばされて結晶化することで、亀裂の進展が抑制される。

When we stretch a pre-notched specimen of a conventional polymer gel, the crack propagates immediately and the sample is broken. For the self-reinforced gel, the strain-induced crystallization of polymer chains near a crack tip suppresses crack propagation.

 $https://www.issp.u-tokyo.ac.jp/maincontents/organization/labs/mayumi_group.html \\$