三輪研究室 Miwa Group ## 研究テーマ Research Subjects - 1 キラル分子スピントロニクス Chiral molecular spintronics - 2 量子物質スピントロニクス Quantum material spintronics - 3 フェムト秒パルスレーザーや放射光 X 線等のオペランド分光 Operando spectroscopy using pulse laser and synchrotron radiation - 4 スピンによる脳型コンピューティング Brain-inspired computing using spintronics 准教授 三輪 真嗣 Associate Professor MIWA, Shiniii 専攻 Course 新領域物質系 Adv. Mat., Frontier Sci. 特徴的なナノ構造を用いた物性実験研究を行っている。具体的には、半導体工学で発展した超高真空薄膜成長技術を駆使し、異種材料界面を持つ多層膜デバイスを用いて研究を行う。ナノの世界において「スピン」の性質が顕著に現れることに着目し、新物質・材料デバイスが示す新たな物性(物の性質)を見つけて機能化し、物理を把握して室温で大きな効果を示すデバイス物性の創成を目指している。 最近は物質のキラリティを利用した研究に注力している。キラリティは物理学だけでなく、化学、生物学、天文学でも共通して扱われる珍しい性質であり、特に有機分子のキラリティを用いたスピントロニクスデバイスの研究を進めている。また、量子物質であるトポロジカル反強磁性体のデバイス物性、フェムト秒パルスレーザーやX線分光を用いた「オペランド分光」の開発なども行っている。 We are conducting experimental research on the physical properties of unique nanostructures. Specifically, we utilize ultrahigh vacuum thin film growth technology, a development from semiconductor engineering, to study multilayer devices composed of interfaces between different materials. Our focus is on the properties of "spin", which become pronounced at the nanoscale. Our goal is to uncover new physical properties exhibited by novel material devices, to functionalize these properties, and to understand the underlying physics for creating device properties with significant effects at room temperature. Recently, our research has concentrated on the chirality of materials. Chirality is a property that finds relevance not only in physics but also in chemistry, biology, and astronomy. We are especially progressing in research on spintronic devices that exploit the chirality of organic molecules. Additionally, we are investigating the device properties of topological antiferromagnetic materials—quantum materials—and developing "operando spectroscopy" techniques using femtosecond pulse lasers and X-ray spectroscopy. キラル分子スピントロニクス: a, 特徴的なナノ構造の例。b, キラル分子と対称性。c, キラル誘起スピン選択性 (Chirality-induced spin selectivity: CISS) による熱励起スピン偏極の実証結果。 Chiral molecular spintronics: a, An example of a unique nanostructure. b, Chiral molecule and symmetry. c, Thermally driven spin polarization induced by chirality-induced spin selectivity (CISS). 量子物質スピントロニクス: a, トポロジカル反強磁性体 Mn₃Sn のスピン及び結晶構造。b, 分子線エピタキシー法により作製した多層膜構造の電子顕微鏡写真。c, トポロジカル反強磁性体によるトンネル磁気抵抗効果。 Quantum materials spintronics: a, Spin and crystal structure of the topological antiferromagnet Mn₃Sn. b, Transmission electron microscope image of the multilayer structure of Mn₃Sn prepared by molecular beam epitaxy. c, Tunnel magnetoresistance of the topological antiferromagnet.