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In condensed matter physics, dynamical

mean-field theory (DMFT) [1] is a widely used

tool for the study of strongly correlated elec-

tron systems. In a DMFT calculation, a corre-

lated lattice model is mapped to an impurity

problem whose bath degrees of freedom are

self-consistently determined. DMFT can be

combined with density functional theory based

ab-initio calculations as the DFT+DMFT

method, to describe strongly correlated mate-

rials such as transition metal oxides [2]. The

DFT+DMFT method is useful particularly for

investigating one-particle excitation of the sys-

tems. The DFT+DMFT allows us to com-

pute one-particle spectral functions, which can

be compared directly with angle-resolved pho-

toemission spectroscopy (ARPES). Although

there are several open-source computational li-

braries for DMFT calculations, the use of these

libraries requires some expertise. This pre-

vents wider use of the DFT+DMFT method

in studies of condensed matter physics.

To make this method available to non-

experts(including students) in the community

in condensed matter physics, we have devel-

oped an open-source software DCore ver.1 [3]

in Project for advancement of software us-

ability in materials science [3] at the fiscal

year of 2017. DCore is an abbreviation of

“integrated DMFT software for CORrelated

Electrons”. DCore is built on the top of

elaborate softwares TRIQS [5] and ALPSCore

libraries [6] and related softwares. DCore

performs calculations based on DMFT with

the help of these libraries. As an impurity

solver, one can select continuous-time quan-

tum Monte Carlo method or the Hubbard-

I approximation. Because DCore provides a

well-organized text-file-based interface, users

can perform the DFT+DMFT calculation with

less effort. In a typical DFT+DMFT calcu-

lation, the non-interacting Hamiltonian H(k)

is extracted from the results of DFT calcula-

tions by projecting the band structure to max-

imally localized Wannier functions. In DCore,

we can import H(k) from outputs of the DFT

codes which support Wannier90 such as VASP,

Wien2k, Quantum ESPRESSO, and OpenMX.

DCore consists of multiple programs, each

of which performs a different step of DMFT

calculations. To be more specific, DCore con-

sists of three layers: interface layer, DMFT

loop, and post-processing. Those are per-

formed by the executables dcore pre, dcore,

dcore post, respectively. Input parameters

are provided by a single text file, which is read

by all the three programs.

For the interface layer, there are two types of

interfaces: standard interface for tight-binding

models and Wannier90 interface for materials.

For the standard interface, one can choose one

of predefined tight-binding models. On the

other hand, for the Wannier90 interface, one

is able to import a tight-binding model con-

structed by DFT calculations. The data de-

scribing the system generated by dcore pre is
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Install Documentation Issues About DCoreDCore
integrated DMFT software for CORrelated Electrons

Tutorial with single-band 2D Hubbard model
The first example is the two-dimensional Hubbard model. We use the Hubbard-I approximation for solving the
effective impurity problem and see the emergence of the Mott gap. The input file is given below.

dmft_square.ini

[model]
seedname	=	square
lattice	=	square
norb	=	1
nelec	=	1.0
t	=	-1.0
kanamori	=	[(2.0,	0.0,	0.0)]

[system]
beta	=	40.0
nk	=	8
n_iw	=	1000
prec_mu	=	0.001

[impurity_solver]
name	=	TRIQS/hubbard-I

[control]
max_step	=	7

[tool]
broadening	=	0.4
nnode	=	4
knode	=	[(G,0.0,0.0,0.0),(X,0.5,0.0,0.0),(M,0.5,0.5,0.0),(G,0.0,0.0,0.0)]
nk_line	=	100
omega_max	=6.0
omega_min	=-5.0
Nomega	=	400

Pre-process : dcore_pre

We first generate an HDF5 file that is necessary for DMFT calculations. The script dcore_pre is invoked for this
purpose:

$	dcore_pre	dmft_square.ini

Then, an HDF5 file named seedname.h5 (square.h5 in the present case) will be generated.

DMFT loop : dcore

One can perform a DMFT self-consistent calculation with dcore program. In this tutorial, we use the Hubbard-I
solver just for simplicity. One can run the program by

$	dcore	dmft_square.ini

It takes several minutes. You may run it with MPI to reduce the computational time. Results for the self-energy
and Green’s function in each iteration are accumulated into an HDF5 file named seedname.out.h5
(square.out.h5 in the present case).

If those results are not yet converged, one can continue the DMFT iteration using the same ini file. dcore program
automatically finds results in the previous run and continue iterations.

Spectral function : dcore_post

We can calculate the density of states and the momentum-dependent single-particle excitations using dcore_post
program. In the Hubbard-I solver, the self-energy on the real-frequency axis can be directly computed (no
analytical continuation is required). Hence, the impurity problem is solved once more in dcore_post.

The calculation is done by the following command:

$	dcore_post	dmft_square.ini

After finishing the calculation, square_akw.dat, square_akw.gp and square_dos.dat are generated. The data of
momentum-resolved spectral functions are output into square_akw.dat. We can easily plot the result by using
the script file square_akw.gp for gnuplot:

$	gnuplot	square_akw.gp

The result for the density of states is output into square_dos.dat. We can plot it using gnuplot as follows:

gnuplot>	set	xlabel	"Energy"
gnuplot>	set	ylabel	"DOS"
gnuplot>	plot	"square_dos.dat"	w	l

Figure 1: The upper panel shows an example of

input file for single-orbital Hubbard model on a

square lattice. The lower panel shows the com-

puted momentum-resolved spectrum A(k, ω).

stored in a file in the HDF5 format, which is

read in the later processes. Self-consistent cal-

culations are performed by dcore and the re-

sults are stored in a separated HDF5 file. One

can analyze the result and plot the data by

using dcore post.

We show an example for a single-orbital

Hubbard model on a square lattice in Fig. 1

using the standard interface. In the input file,

one can choose the lattice model, the type of

local interactions, and their strengths. Here,

the impurity solver is the Hubbard-I approxi-

mation using an implementation in TRIQS. The

computed results are processed by dcore post

and are converted into human-readable for-

mats. One can plot the data by using stan-

dard tools such as gnuplot (see Fig. 1.)

With the Wannier90 interface, one can per-

form DFT+DMFT calculations by using a sin-

gle similar text input file for DCore. We refer

the interested reader to the website [3] for more

examples for real materials.

Finally, we introduce some of available fea-

tures in DCore ver 1 and a future development

plan of DCore. The feature of DCore is to

treat many kinds of interactions such as multi-

orbital models with non-density-density inter-

actions and spin-orbit coupling. Thus, we can

perform collinear magnetic calculations. A fu-

ture version will support the computation of

(free) energy, two-particle quantities such as

local magnetic susceptibilities, and the calcula-

tions of non-collinear magnetic structures. The

software will be preinstalled on the supercom-

puter (Sekirei) at ISSP in 2018. We hope that

DCore promotes wide use of the DFT-DMFT

calculations, which is one of excellent methods

for understanding strongly-correlated electron

systems.
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GPGPU implementation of Fluid Particle Dynamics

(FPD) method
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Structural ordering in colloidal suspensions

is significantly influenced by many-body hy-

drodynamic interactions among colloids, be-

cause the liquid flow field is intrinsically cou-

pled with colloid motion. When numerically

studying such a process, we inevitably en-

counter a complicated moving boundary prob-

lem, because the non-slip solid-fluid boundary

condition has to be satisfied at the surface of

the colloidal particles. However, solving such

a boundary problem is numerically costly, be-

cause we need to generate a complex adaptive

mesh depending on the positions of colloids at

every time step [1, 2]. This difficulty can be

overcome by treating a solid colloidal particle

as an undeformable fluid particle with high vis-

cosity. We call this method Fluid Particle Dy-

namics (FPD) method [3, 4].

When examining self-assembly kinetics of

colloidal suspensions numerically, we need to

choose the length/time scale of our simulations

large/long enough for problems we study. As

an example, we consider phase separation of a

dilute colloidal suspension, which is often ac-

companied by network formation of colloidal

particles. To study this problem numerically,

we need to use a large simulation box whose

size is far beyond the typical length of ag-

gregates such as the typical pore size of the

resulting colloidal gel. Considering the long-

range nature of hydrodynamic interactions,

there is also a possibility that a gelation pro-

cess may severely be influenced by finite size

effects. Therefore, we need a large-size sim-

Figure 1: Schematic figure for the way of utiliz-

ing computational resources in a large-scale simu-

lation (case(a)). All the computations except for

Fast Fourier Transformation (FFT) are performed

with a hybrid GPGPU+MPI program. For FFT

we transferred the data from devices to hosts and

executed it on hosts with a hybrid MPI+OpenMP

program.

ulation. Furthermore, when we are interested

in kinetics of structure formations in dense sus-

pensions, The time scale of simulation becomes

important. This is because the diffusive mo-

tions of colloids should largely slow down due

to steric hindrance by the surrounding colloids

in such a dense system. Consequently, the time

scale of the structural ordering such as crystal-

lization is usually much slower than that ex-

pected from the Brownian time of a free col-

loid. Thus, in order to numerically follow such

a slow dynamics, a long time simulation is re-

quired.

For the above reasons, we need to overcome

the problems of the numerical costs associated

with simulation size and time. To this end, we
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perform GPGPU implementation for (a) col-

loidal gelation and (b) crystallization, utilizing

a service provided by ISSP. In this report we

explain the outcome of this project.

In ISSP’s Supercomputer Center we used

queue of F18acc (class B) where 24 CPUs and 2

GPUs (TeslaK40c) are implemented per Node.

Each GPU has approximately 12 GB of mem-

ory. For case (b), the system size was set as

(L/σ)3 = 17.33 where L and σ are the side

length of the simulation box and the diameter

of colloids (the corresponding size of the box in

the lattice unit is 1283). In the above setting,

we can perform simulations while storing all

the data on device since the amount of data

(0.45 GB) is less than that of GPU’s mem-

ory. For case (a) this system size is not large

enough to capture a hierarchical structure of

a colloidal gel [5] as explained in the previous

paragraph. Therefore we performed larger sys-

tem size simulations, (L/σ)3 = 69.23. In this

case, the required memory is ∼ 30GB, which is

beyond the capacity of single GPU. We trans-

fer the large amount of data between hosts and

devices, developing a simulation code by hy-

brid GPGPU+MPI parallelization. By divid-

ing all the data with MPI parallelization and

distributing them onto multiple GPUs, we can

perform most of computations while keeping

the data stored on GPUs. In the FPD method

we also use Fast Fourier Transformation(FFT)

where only part of FFT is performed on host

with hybrid MPI+OpenMP parallelization(see

Fig.1), because in CUDA and OpenACC no li-

brary that can deal with FFT beyond nodes is

provided at this moment.

With the above setting, we examine the

performance of simulations by the GPGPU

adopted codes. For case (b) where we uti-

lize single GPU, the speed measured is 3.7

times faster than that of our previous non-

GPGPU simulations, which are performed by

MPI parallelization with 16 threads. By this

speeding up, we succeeded in simulating the

whole process of crystallization in a colloidal

suspension from a metastable liquid state to a

crystal state. For case (a), we use 32 GPUs

(16 Nodes) and realize 10.4 times speeding up

compared with our previous non-GPGPU sim-

ulations with 16-threads MPI parallelization.

With this codes, we successfully perform sim-

ulations with 8 times larger system size (in

volume) than the simulations without GPGPU

implementation and observe power-law growth

behavior over one order of magnitude in time.

This power-law behavior, which has never been

confirmed with the non-GPGPU simulations

because of its slow computational speed, im-

plies a characteristic coarsening process of col-

loidal gelation [5].

In summary, we have made GPGPU imple-

mentation of the FPD method to study col-

loidal gelation and crystallization. We have

succeeded in 10.4 and 3.7 time speeding up

compared with the performance of our previ-

ous simulations without GPU parallelization.

We thank ISSP Supercomputer Center for pro-

viding computational resources and a service

for GPGPU implementation.
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Implementation of GPGPU computing in full

diagonalization for HΦ

Takahiro Misawa and Kazuyoshi Yoshimi

Institute for Solid State Physics, University of Tokyo
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From the 2015 fiscal year, we have been de-

veloped the open-source software for exact di-

agonalization HΦ [1, 2] under the support of

“Project for advancement of software usabil-

ity in materials science” by Institute for Solid

State Physics (ISSP), University of Tokyo. At

the initial stage of the development (HΦ ver.

1.0 released at the 2015 fiscal year), we im-

plemented the full diagonalization using the

LAPACK routine [3], the exact diagonalization

using the Lanczos method [4], and the finite-

temperature calculations using the thermal

pure quantum states [5] for the general Hamil-

tonians in the quantum lattice models. Then,

in the 2016 fiscal year, we implemented the

functions for calculating the dynamical corre-

lation functions using the Lanczos method [4]

and the shifted Krylov method [6]. We also

implemented the LOBCG method [7] that en-

ables us to obtain many low-energy excited

states in one calculations. In the 2017 fiscal

year, the real-time evolution is implemented

and the developers’ manual has been written.

Several useful methods without full diago-

nalization such as the Lanczos method and the

thermal pure quantum states have been imple-

mented in HΦ so far. Although the full di-

agonalization is widely used in the condensed

matter physics and is also useful for examining

the accuracy of other methods, it is still done

by the LAPACK routine for single CPU pro-

cessor in HΦ. To get rid of this weak point in

HΦ, under the support of supercomputing cen-

ter at ISSP, we have implemented the GPGPU
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Figure 1: Comparison of elapsed time of full di-

agonalization for the one-dimensional Heisen-

berg chain by the LAPACK routine zheev

with 24 openmp threads and the MAGMA

routine magma zheevd with 2 GPGPUs.

The calculations are done using single node

in F18acc at the supercomputer system B

(sekirei). We perform the calculation up to

L = 14 (matrix dimension is 214 = 16384) from

L = 8 (matrix dimension is 28 = 256). Full di-

agonalization by the GPGPU becomes faster

for L ≳ 2500. We also show the results by the

ScaLAPACK performed by 16 nodes in i18cpu

for L = 14. In the ScaLAPACK, by increasing

the number of MPI process, the elapsed time

becomes shorter. The full diagonalization by

the GPGPU by 1 node is, however, still faster

than the ScaLAPACK by 16 nodes.

(General Purpose Graphics Processing Unit)
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computing for the full diagonalization in this

project. We also implemented the full diag-

onalization by the ScaLAPACK [8] for multi

processors in another project and compare the

results with the GPGPU. In this activity re-

port, we explain how the GPGPU computing

accelerates the full diagonalization in HΦ.

We replace the zheev function in LAPACK

with the magma zheevd in the MAGMA li-

brary for GPGPU computing [9]. We note that

the MAGMA library only supports the diago-

nalization in single process and multi GPG-

PUs. Thus, we perform the benchmark in sin-

gle process. In Fig.1, we show elapsed time of

the full diagonalization for the one-dimensional

Heisenberg chain as a function of the dimen-

sion of the matrix. In this calculation, we do

not specify z component of the spin (Sz), the

dimension of the matrix is given by 2L, where

L is the system size. We find that the GPGPU

computing becomes faster than the LAPACK

library around L ∼ 2500. For larger system

sizes (L ≥ 5000), the full diagonalization by

GPGPU is about 10 times faster than the LA-

PACK routine. In addition, surprisingly, we

find that the GPGPU computing with 1 node

is still faster than the ScaLAPACK with 16

nodes. This result indicates that the GPGPU

computing is efficient in performing the full di-

agonalization for intermediate size of matrices

(size of matrices is about 104), which can be

treated in single node.

For the standard models in the condensed

matter physics such as the Heisenberg or the

Hubbard model, users can easily perform the

full diagonalization using the standard mode

in HΦ [1, 2] by preparing only one input file

as follows:

L = 12

model = "SpinGC"

lattice = "chain"

method = "FullDiagh"

J = 1.0

NGPU = 2

By using the expert mode, users also treat the

general Hamiltonian with the arbitrary one-

body potentials and the arbitrary two-body

interactions. Furthermore, in HΦ, it is pos-

sible to input the arbitrary Hermite Hamilto-

nians in the Matrix Market format [10] and

perform the full diagonalization. Thus, the im-

plemented efficient full diagonalization method

by the GPGPU computing inHΦ is useful for a

wide range of the scientists in the fields of con-

densed matter physics and the mathematical

science, who want to diagonalize and analyze

the large-scale matrices.

Acknowledgment: This work was sup-

ported by support service of program porta-

bility to General Purpose Graphics Processing
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Supercomputer course of Computational Materials Design 
(CMD®) workshop 
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The 31th Computational Materials Design 

(CMD®) workshop (CMD31) has been held 

from September 11 to September 15 and the 32th 

CMD® workshop (CMD32) has been done from 

February 26 to March 2 at Graduate School of 

Engineering Science, Osaka University. In this 

workshop we have the supercomputer course to 

train up human resources to advance researches 

by using system B supercomputer of ISSP, the 

University of Tokyo.  

In CMD31 six participants took the 

supercomputer course and got a tutorial on 

STATE-Senri developed by Y. Morikawa. After 

explaining how to use the supercomputer of 

ISSP and explaining how to use STATE-Senri, 

calculation models on each research subject of 

the participants were built and their calculations 

were carried out. Concrete themes were 

adsorption states, vibration modes and quantum 

effect of CH4 molecule on the Pt surface, formic 

acid adsorption structure on Cu surface and its 

vibration modes and decomposition reaction 

process, and structure and reactivity of Pt atoms 

supported on graphene and so on. The 

participants performed the calculations and 

examined the results. 

In CMD32 one participant took the 

supercomputer course and got a tutorial on 

RSPACE developed by T. Ono. After describing 

the calculation method of electronic states and 

electron conduction property using RSPACE, 

exercises published in the manual were carried 

out. Then, electronic state calculations were 

carried out on a plurality of molecular systems, 

and the electronic density distribution was 

visualized. Finally, the atomic structure 

optimization of the system in which molecules 

are sandwiched between metal electrodes was 

carried out, and the calculation of electron 

conduction properties of molecules was 

analyzed. 
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