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1. Introduction
Proteins have incredibly complex structures

and functions related to its structural dynamics, 

which are fundamental to various biological 

phenomena occurring in vivo such as molecular 

recognition, transport processes, enzymatic 

reactions, etc. Although more than 130,000 

structures are currently stored in the Protein 

Data Bank (PDB), the direct measurement of 

structural changes, which are essential for a 

protein function, was quite limited in spite of 

the recent advances in single-molecule 

experiments. Alternatively, conventional 

molecular dynamics (CMD) are ways to 

reproduce biological phenomena in silico. 

However, it is often difficult for CMD to keep 

track with real biological phenomena owing to 

its accessible timescale. Thus, in order to 

theoretically observe large-scale structural 

changes such as protein folding and domain 

motion, extremely long-time dynamics [1-3], 

multi-canonical method [4-5], replica exchange 

method [6], metadynamics [7-9], temperature-

accelerated MD method [10], etc were applied 

to overcome the timescale issue. However, they 

still need know-how for the individual problem 

and huge computer resources. Therefore, it is 

desirable to develop easier and automatic 

methods for transition pathway sampling of 

complicated systems such as proteins. 

As a more straightforward and faster 

sampling method, we have proposed an 

efficient sampling method consisting of (1) an 

initial structure selection with high possibility 

of inducing structural changes and (2) structural 

resampling of initial structure based on short 

time MD. The key to this method is to select 

plausible initial structures from past trajectories. 

Once a transition path, which connects one 

stable structure to the other, is obtained, precise 

free energy analyses can be performed 

immediately. Therefore, this method might be 

more efficient than the other conformational 

sampling methods.  

In this short review, the calculation schemes 

and several examples of structural changes of 

proteins are outlined (for details see the review 

paper [11]). In the following section, we 

explain the methodologies of our approach. 

Then, numerical results are discussed in Sec. 3. 

Concluding remarks are given in Sec. 4. 
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Figure 1. A flowchart of our conformational 

sampling scheme 

 

2. Methodology 
2.1. Basic Idea of Parallel Cascaed Selection 

Molecular Dymamics (PaCS-MD) 

The method we have proposed is rather 

simple. The flowchart of the algorithm is 

shown in Figure 1. The calculation procedure 

of the structural sampling method is briefly 

described below. 

I. Executing MD simulations from several 

selected initial structures (ninitial = N) for a 

relatively short time with a canonical 

ensemble (NVT or NPT).  

II. Ranking snapshots of each MD trajectory 

based on a predetermined rule (selection 

rule) for some measures.  

III. Selecting the ninitial structures of the next 

cycle, where snapshots with higher rank are 

preferentially selected. 

IV. Regenerating the initial velocities at the 

target temperature according to the 

Maxwell-Boltzmann distribution.  

V. Repeating the cycles of (I) - (IV) until the 

distribution function along certain reaction 

coordinates does not change any more. 

Otherwise, the cycle ends when some of 

structures (or data) are sufficiently close to 

the target structure (or data).  

VI. Applying the umbrella sampling (US) 

method [12-13] followed by the weighted 

histogram analysis method (WHAM) [14-

15] to obtain free energy landscape 

projected onto reaction coordinates by 

referring a reactive trajectory obtained 

above. Markov State Model is also utilized 

to estimate free energy surfaces in terms of 

trajectories sampled by PaCS-MD. 

The original methodology, i.e. PaCS-MD [16], 

ranks snapshots based on the similarity between 

the trajectory obtained from the short-time MD 

and the target structure (for example, root-mean 

square deviation (RMSD) between them). After 

determining the ranks, one selects the ninitial 

(typically 10 – 100) structures with higher rank 

as the initial structures of the next cycle and 

performs ninitial different short-time (typically 

100 ps) MD simulations independently. By 

repeating the series of cycles, PaCS-MD 

generates closer structures to the target 

structure than those found in the previous cycle 

and occasionally induces structural transitions 

without using external perturbations. 
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2.2 Variants of PaCS-MD without using 

target structures 

The disadvantage of the original PaCS-MD 

is to require the target state. To remove the 

drawback, we have developed several variants 

discussed below in detail. A conceptual 

difference from PaCS-MD is to use a different 

selection rule in each method, which has each 

advantage and disadvantage compared to 

PaCS-MD. Unlike PaCS-MD, its variants, i.e. 

fluctuation flooding method (FFM) [22], outlier 

flooding (OFLOOD) [24], structural 

dissimilarity sampling (SDS) [29] methods 

mentioned below, do not require a target 

(product) structure a priori, while these method 

take more cycles to find transition pathway 

than PaCS-MD does. 

Dynamics of proteins involved in functional 

expression are often anisotropic, and certain 

vibrational modes with high anharmonicity are 

dominant. We consider that the anisotropy can 

be extracted by principal component analysis 

(PCA). We have developed FFM that 

efficiently induces structure transitions by 

assuming that protein structure with high 

structural fluctuation transits with high 

probability with structural re-sampling [22]. 

The basic concept of FFM is that the principal 

modes with large eigenvalues are chosen as 

reaction coordinates of a large amplitude 

motion and used for estimating measures. The 

snapshots with the maximum and minimum 

inner product values for the j-th principal 

component coordinates (PCj) and/or a multi-

dimensinal PC vector space, which is obtained 

by PCA, are selected as the initial structures at 

the next cycle. 

Metastable states exist in a high-

dimensional subspace, where high density 

distributions appear during MD simulations and 

are detected as clusters, and transitions among 

different metastable states occur with large 

structural changes. Since the sparse distribution 

exists among clusters (sometimes between two 

clusters), a structure change is induced by 

intensively selecting structures with lower 

density distribution as the initials. Sparse 

distributions that do not belong to clusters are 

referred as "outliers" and can be detected using 

a hierarchical clustering method such as 

FlexDice [23]. Structural resampling 

intensively from the outliers of distribution is 

called as "OFLOOD” method [24], which 

promotes structural transformation efficiently 

in addition to its variants [24-28]. 

SDS, which realizes efficient structural 

sampling by repeating structural resampling, 

selects the initial structures so that the 

structural correlation with a structure (starting 

structure, mean structure, and so on) becomes 

as small as possible in the current cycle. This 

method is an effective technique when the 

target structure is unknown and a dissociation 

process of a molecular copmlex. For details of 

the calculation procedure, see the previous 

works [29-30]. 
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2.3. Numerical Details 

Initial structural data were taken from the 

PDB as the starting structures of PaCS-MD and 

its variants. After solvation with SPC/E or 

TIP3P water models and neutralization with 

counter ions, CMD simulations were performed 

under three-dimensional periodic boundary 

conditions using the Amber force field [31]. 

Water molecules were treated as rigid bodies 

with the SETTLE algorithm [32], while 

chemical bonds of the proteins were treated as 

rigid bodies with the LINCS algorithm [33]. To 

model the equilibrated systems, NVT 

simulations were first performed and followed 

by NPT simulations. NVT and NPT simulations 

were conducted with the modified Berendsen 

thermostat at 300 K [34] and the Parrinello-

Rahman method at 1 bar and 300 K [35-36]. 

The equations of motion were integrated by the 

leapfrog method. The time step length was set 

to 2 fs. The cutoff value for Coulomb and van 

der Walls interactions was set to 10 Å. During 

conformational resampling, trajectories were 

recorded every 1 ps. For the PaCS-MD and its 

variant simulations, 10 or 100 different initial 

structures (ninitial) were simultaneously used for 

the efficient conformational sampling 

depending on the biological systems At every 

cycle, 100 ps short-time MD simulation with 

renewed velocity under NVT ensemble (T = 300 

K) were launched until sufficient 

conformational sampling was accomplished. 

For the free energy analysis, 200 reference 

structures were randomly selected from the 

trajectories of FFM and the umbrella sampling 

for each reference structure was performed for 

1ns and followed by WHAM to estimate the 

free energy landscape of T4L. All MD 

simulations were performed with the GPU 

version of the Gromacs 5.0.7 package [37]. 

 

 

3. Results and Discussion 
3.1 Domain motion of T4L by FFM 

As an example of FFM, we here explain 

results of an open-closed structure transition of 

T4L. The open structure of T4L (wild type) 

was chosen as a starting structure. In order to 

induce structural transition, we selected the first 

and second principal coordinates (PC1 and PC2) 

as the reaction coordinates. In order to obtain 

PCs, CMD (10 ns) from the open structure was 

performed a priori, then PCA was performed 

using the 10-ns trajectory. According to the 

accumulated contribution of principal modes 

(PMs), the open-closed conformational 

transition can be sufficiently described because 

 

 
Figure 2: Conformational transition pathways 
from the open to the closed states of T4 lysozyme 
reproduced by FFM. 
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the top two PMs accounted for 80% or even 

more of the overall protein structure fluctuation. 

Here, we show the structural transition process 

from the open to closed structures of T4L 

reproduced by FFM [16]. Figure 2 shows the 

accumulated distributions of trajectories 

projected onto a subspace spanned by PC1 and 

PC2. For comparison, we also depicted red 

points (green points) which show the projection 

of a conventional MD trajectory (10 ns) from 

the open structure (the closed structure). The 

projected points by FFM (blue points) expand 

to the periphery and reaches the closed 

structure (magenta) within about 15 cycles 

(several tens of ns). After 15th cycles, the 

accumulated trajectories travels all over regions 

in the subspace. As a comparative calculation, 

extremely long-time CMD simulation (1 μs) 

was started from the open structure. However, 

no open-close conformational transition was 

observed. After FFM, we estimated FEL onto 

the subspace as illustrated in Fig. 3, whose cost 

was 200 ns, indicating the efficient structure  

 
Figure 3: Conformational transition pathways 
from the open to the closed states of T4 lysozyme 
reproduced by FFM. 

search and FEL analyses of FFM. According to 

this result, the free energy barrier and transition 

states are clearly found between two states. 

 

3.2 Protein folding pathway of Villin by 

OFLOOD method  

As an application example of the OFLOOD 

method, we here show the protein folding 

process of the small protein Villin (35 residues). 

Partial RMSDs, helix 1 - helix 2 (segment A) 

and helix 2 - helix 3 (segment B), measured 

from the native structure were used as the 

reaction coordinates, which had been defined in 

the previous study [32]. After modeling the 

amino acid chain, structural sampling by the 

OFLOOD method with 100 seeds was repeated 

for 20 cycles, where the generalized Born and 

surface area (GB/SA) solvation model was 

adopted for the solvent around the Villin. 

The projection of the trajectories generated 

by the OFLOOD method is shown in Figure 4. 

It is easily found that the outliers (black points) 

were located the edge of the distribution at each 

cycle and became broaden as cycles went by. It 

took about 10 cycles to reach the native 

structure of Villin highlited by a cross in 

Figure 4. The minimum Cα RMSD measured 

from the X-ray crystal structure after the end of 

20 cycles was 0.60 Å, indicating that natural 

structure can be sampled by the OFLOOD 

method accurately. Furthermore, we also 

extracted a minor pathway (see right bottom of 

Figure 4) that could not be observed in the 
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Figure 4. Major and minor folding pathways of 

Villin reproduced by OFLOOD method 

 

previous study [4]. Concerning to the 

computational efficiency, the cumulative 

computation time to sample the native structure 

(Cα RMSD <1.0 Å) was 135.6 ns. We could 

extract the folding path very efficiently 

compared to the replica exchange MD (8 μs) 

[4]. Since computational cost required in our 

calculations was ns-order and the time-scale of 

the protein folding process is μs-order, the 

OFLOOD method is quite efficient for finding 

protein folding pathways. 

 

3.3 Open-to-Closed structure transition 

pathway searches by SDS 

     To show the conformational sampling 

efficiency, SDS was applied to structural 

transition between two different states (open 

and closed states) of maltodextrin binding 

protein (MBP) in explicit water. MBP is a 

protein consisting of 370 residues and induces 

large-amplitude domain motions for ligand 

binding. In this example, apo-type simulations 

were considered. CMD simulation may be 

useful for reproducing the large-amplitude 

(open-closed) domain motions of MBP. 

However, we have not detected the structural 

transition at all, even if a long-time (1 sec) 

simulation was perform starting from the open 

state. Instead we have performed SDS 

simulations for 50 cycles starting both from the 

apo-type closed and open states. As a result of 

the demonstration starting from the open 

(closed) structures, the minimum values of C 

RMSD measured from the X-ray crystal 

structure of closed (open) forms were 0.78  Å 

(0.89  Å) as illustrated in Fig. 5. The closest 

snapshots to the X-ray crystal structures 

sampled by the SDS simulations are overlapped 

 

 
Figure 5: (a) Snapshot with the minimum value 
of RMSD (0.78 Å) measured from the closed state 
of MBP (red), which was sampled by SDS during 
the 50 cycles starting from the open state of MBP. 
(b) Snapshot with the minimum value of RMSD 
(0.89 Å) measured from the open state of MBP 
(red). Each snapshot is superimposed with the X-
ray crystal structure (blue). 
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in Figure 5(a) and 5(b), indicating that SDS 

also induces the open-to-closed and its inverse 

conformational transitions quite efficiently and 

gave accurate structures without knowledge of 

the well-defined target structures. 

 

 

4. Conclusion 
In this review, we outline the PaCS-MD and 

its variants and show examples of their 

applications. If the reactant and the protein 

structure of the product are known, PaCS-MD 

can be applied to extract the path connecting 

the two end-point structures. On the other hand, 

FFM, OFLOOD, and SDS are applicable to 

extract transitional pathways starting from the 

protein structure of a given reactant without 

knowldge of any product. For example, FFM 

started with an open structure and derives an 

open-closed domain motion of T4L using ns-

order simulation. OFLOOD also presumed 

Villin's folding pathways using ns-order 

simulations starting with fully extended 

structures. SDS generates both open-to-closed 

and closed-to-open structural transitions of 

MBP within 500 ns-order simulations. These 

types of methods may be convenient for 

predicting metastatic pathways or starting from 

a given reactant without knowledge of the 

reactants and finding the local/global energy 

minimum state of proteins , Which is one of the 

advantages of three-dimensional sampling. 
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