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Abstract

We review irreversible Markov chain Monte

Carlo (MCMC) methods, which violate de-

tailed balance and yet still converge to a given

target probability distribution. One way to

construct an irreversible Markov chain is to

enlarge the sampling space from the original

space used in the reversible one. The idea is

often referred to as “lifting”. Two independent

irreversible MCMC methods, belonging to the

lifting MCMC, are discussed.

1 Introduction

Markov chain Monte Carlo (MCMC) methods

have been intensively used as sampling tools

from a high-dimensional probability distribu-

tion in a wide area of physics, biology and sta-

tistical sciences. In particular, MCMC meth-

ods are one of the non-peturbative analysis

methods for many-body problems in the re-

search field of statistical physics and condensed

matter. Some advanced algorithms based on

extended ensemble method [2] such as the mul-

ticanonical method [3], the simulated temper-

ing [4, 5] and the exchange MC method [6]

or parallel tempering, allows us to study more

complex systems with rugged free-energy land-

scape, which are difficult to equilibriate by a

simple MCMC algorithm with local update.

Since the seminal paper by Metropolis et al.

in 1953 [1], most of the MCMC algorithms

are on the basis of the Metropolis strategy,

in which a Markov chain of the random vari-

ables to be sampled makes the target distribu-

tion an invariant distribution. Then, one may

often impose the detailed balance condition

(DBC) for Markov chain, called a reversible

MCMC method. It is, however, not always

necessary to construct the MCMC method us-

ing DBC. One of the pioneering works has been

done by Suwa and Todo[7, 8], in which a sys-

tematic construction procedure is proposed for

the MCMC algorithm without DBC, but with

the global balance condition, called an irre-

versible MCMC method. They showed that

the proposed method is able to bring about

several times reduction in the correlation time

of Potts model and a quantum spin model.

Subsequently, Turitsyn et al. [9] and Fernan-

des and Weigel [10] have proposed another

type of MCMC method without DBC sepa-

rately and they also found a qualitative im-

provement in efficiency of the MCMC method

in a mean-field Ising model. Furthermore,

from a completely different context in statisti-

cal physics, another MCMC algorithm break-

ing DBC, called event-chain Monte Carlo al-

gorithm, has been developed mainly for inter-

acting particle systems.

These works have attracted a great deal of

attention to the MCMC algorithms without

DBC. The Markov chain dynamics with DBC

exhibits diffusive behavior in sampling space,

which yields slowing down close to phase tran-

sitions. We expect that it would be helpful

to have some inertia effect by breaking DBC

as if the sugar in a cup of coffee is spread

faster using a spoon to stir the cup. In the

framework of DBC, a useful guiding princi-

ple for constructing an efficient MCMC algo-
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rithm is given by Peskun’s theorem [11]. Ac-

cording to the theorem, it turns out that an

MCMC algorithm is improved in quality by

reducing a rejection probability in the sense

that asymptotic variance of any observable be-

comes small. The strategy of Suwa-Todo algo-

rithm follows this line. In general, however, no

such a principle is satisfied in the case of the

MCMC method without DBC. Therefore, it

would be worth establishing an intrinsic prin-

ciple of the MCMC method without DBC. In

the mathematics literature[19], the idea of lift-

ing is discussed as a promising way to intro-

duce an irreversible MCMC method by enlarg-

ing sampling space from the original one. In

fact, some of the above-mentioned MCMC al-

gorithms without DBC belong to the lifting

MCMC method[18].

In the present report, we make a review on

irreversible MCMC methods, in which the ba-

sic idea and an implementation of the algo-

rithm are discussed. In particular, we focus our

attention to two different irreversible MCMC

methods, one with a skew detailed balance con-

dition (SDBC) [9] and the event-chain MCMC

method.

2 Irreversible MCMC with

skew detailed balance con-

dition

2.1 Skew detailed balance condi-

tions

In this section, we review an irreversible

MCMC method with the skew detailed bal-

ance condition originally proposed by Turit-

syn, Chertkov and Vucelja [9]. Here, an Ising

spin system is used for the purpose of illus-

tration. It is straightforward to extend the

method to any discrete state models [12] such

as the Potts model. A state of the Ising

model with N spins is specified by a vec-

tor σ = (σ1, . . ., σN ) with σj ∈ {−1,+1} for

j = 1, . . ., N . The target distribution π(σ) for

finding the state σ in the statistical physics

is often proportional to the Boltzmann factor

exp(−βE(σ)) where β is an inverse tempera-

ture and E is the energy of the system to be

studied. The main aims of the MCMC meth-

ods are to generate samples of the state from

the target distribution π(σ), and to calculate

an expectation value of a function f̂ under the

target distribution, e.g. ⟨f̂⟩π =
∑

σ π(σ)f(σ)

where f(σ) is the realization of f̂ with the

state σ and
∑

σ denotes the summation over

2N states.

In the lifting technique, the state space is

doubled by introducing an additional Ising

variable ϵ ∈ {−1,+1}, which is called a lift-

ing parameter. The state in the enlarged state

space is denoted by X = (σ, ϵ) ∈ {−1,+1}N+1

and the corresponding probability distribution

π̃ is assumed to be independent of the lifting

parameter ϵ:

π̃(σ, ϵ) = π̃(σ,−ϵ) = π(σ)

2
. (1)

We consider a single spin-flip update for

both the original spin σ and the lifting param-

eter ϵ as an elementary process in the Markov

chain. Let Fj be a spin-flip operator on the j-

th site: Fjσ = (σ1, . . .,−σj , . . ., σN ). A tran-

sition rate per unit time from state (σ, ϵ) to

(Fjσ, ϵ) is denoted as wj(σ, ϵ) and that from

state (σ, ϵ) to (σ,−ϵ) is λ(σ, ϵ). Using these

transition rates, the balance condition (BC) is

expressed as∑
j

wj(Fjσ, ϵ)π̃(Fjσ, ϵ)−
∑
j

wj(σ, ϵ)π̃(σ, ϵ)

+λ(σ,−ϵ)π̃(σ,−ϵ)− λ(σ, ϵ)π̃(σ, ϵ) = 0.

This ensures that π̃ is the unique invariant dis-

tribution of the Markov chain. For the deter-

mination of the transition rate wj(σ, ϵ), we im-

pose SDBC given by

π̃(σ, ϵ)wj(σ, ϵ) = π̃(Fjσ,−ϵ)wj(Fjσ,−ϵ).
(2)

This requires that the stochastic flow from

state (σ,+ϵ) to (Fjσ,+ϵ) is balanced out
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by that from (Fjσ,−ϵ) to (σ,−ϵ). In gen-

eral, this condition breaks the detailed bal-

ance conditions (DBC): π̃(σ, ϵ)wj(σ, ϵ) =

π̃(Fjσ, ϵ)wj(Fjσ, ϵ). As a specific solution of

(2) , the transition rate wj(σ, ϵ) is given by

wj(σ, ϵ) =
1

2
α (1− σj tanhβhj) (1− δϵσj),

(3)

where α is a time constant and hj is a local

field acting on the site j. The possible range

of δ is −1 to 1 and DBC is recovered in (3) with

δ = 0. The transition rate is equivalent to the

conventional heat-bath transition rate under a

virtual external field ϵH withH = 1
β arctanh δ.

Thus, the lifting parameter ϵ represents the di-

rection of the virtual field in this case. While

ϵ is coupled to the local order parameter σj
in this transition rate, one can replace it with

any other linear function of σj such as a lo-

cal energy σjhj . The choice of the transition

rate might affect the efficiency of the MCMC

method, depending on the model system to be

studied, but this has not been clarified yet at

this moment.

By using SDBC, BC is rewritten as

λ(σ, ϵ)−λ(σ,−ϵ) =
∑
j

(wj(σ,−ϵ)− wj(σ, ϵ)) .

(4)

The explicit form of the transition rate for ϵ flip

is not unique. Turitsyn et al. [9] have proposed

the transition rate as

λ(σ, ϵ) = max

0,
∑
j

(wj(σ,−ϵ)− wj(σ, ϵ))

 ,

(5)

which is referred to as the Turitsyn-Chertkov-

Vucelja (TCV) type. Another type of λ(σ, ϵ)

is also given as

λ(σ, ϵ) =
∑
j

wj(σ,−ϵ), (6)

which is referred to as the Sakai-Hukushima

1 (SH1) type [13]. These transition rates are

available for a general class of the Ising models.

2.2 Irreversible Metropolis-Hastings

algorithm

In this subsection, we explain an actual proce-

dure in MCMC simulations which is based on

Metropolis-Hastings algorithm [14]. Let X(n)

be the state in the enlarged state space after

n iterations. The irreversible MCMC method

starts with an arbitrary initial state X(0) and

iterates the following steps for n = 1, 2, . . . :

(a) Suppose that the current state X(n) =

(σ, ϵ) and choose a site j at random.

(b) Accept the new state asX(n+1) = (Fjσ, ϵ)

with the probability wj(σ, ϵ).

(c) If it is rejected, accept the ϵ flipped state

as X(n+1) = (σ,−ϵ) with an acceptance

rate

A(ϵ→ −ϵ;σ) =
1
N λ(σ, ϵ)

1− 1
N

∑
j wj(σ, ϵ)

. (7)

(d) If it is also rejected, set X(n+1) = X(n).

Return to (a) and repeat the steps (a)–

(d).

It is proved that these steps satisfy BC [12].

One MC step is defined as N iterations of the

steps (a)–(d). To evaluate the acceptance rate

in step (c), the summation with respect to the

site is necessary and its computational com-

plexity is of the order of N . In practice, once

the summation is evaluated at the initial con-

dition, it is sufficient to update the value of

the summation when the spin-flip process is

accepted. The complexity for the update is of

the order of one in statistical-mechanical mod-

els with short range interactions.

2.3 Some applications

We demonstrate that the irreversible MCMC

method explained above works efficiently in a

statistical-mechanical model. Fig. 1 presents

time dependence of autocorrelation function of

the magnetization in a one-dimensional Ising
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Figure 1: Time evolution of autocorrelation function

of the magnetization density in the one-dimensional

Ising model for different values of δ, which is a param-

eter representing the deviation from DBC. The chosen

values of parameter in the simulations are N = 27,

α = 10−2, γ = 0.6. The transition probability used

is the SH1(left) and TCV(right) types. Quoted from

Ref. [13].

model using two different transition probabili-

ties for SH1 type (left) and TCV type (right).

The autocorrelation decays fast with increas-

ing the value of δ, indicating that breaking

DBC makes the relaxation accelerate. In-

terestingly, oscillating behavior is clearly ob-

served for TCV type. This is an intrinsic ef-

fect of the violation of DBC, never seen in

the MCMC methods with DBC. The similar

behavior is also found when the TCV type

probability is applied to the mean-field Ising

model[9]. These studies suggest that the dy-

namical exponent z could be reduced for the

TCV type in the Ising models both in one di-

mension and the mean-field limit. However,

such significant improvement of the efficiency

is not confirmed in two- and three- dimensional

Ising models[12].

On the other hand, the performance evalu-

ation of the lifting MCMC methods has been

extensively studied for an one-dimensional ran-

dom walk problem. Several works showed that

the diffusive dynamics in the problem is qual-

itatively changes by the lifting[19, 17]. While,

no theoretical general criterion has not been

established, it seems that an one-dimensional

structure in the sampling space is necessary for

the irreversible MCMC method with SDBC to

work effectively.

2.4 Irreversible simulated temper-

ing

Another interesting application is to combine

the irreversible MCMC algorithm with the ex-

tended ensemble methods. In particular, the

transition graph of the simulated tempering is

exactly the same as that of the random walk

problem. Thus, one may expect that SDBC

makes the dynamics in the simulated temper-

ing change qualitatively. Here we discuss the

simulated tempering with SDBC[15, 16].

In the simulated tempering, the inverse tem-

perature is treated as a random variable as well

as the configuration σ. More specifically, β

takes R different values {βr}Rr=1 that should

be determined before simulation. In addition,

a lifting variable ε ∈ {+,−} is also introduced

to the system in the irreversible simulated tem-

pering. Thus, a state in the irreversible simu-

lated tempering is specified by (σ, βr, ε). Ac-

cordingly, the target distribution is given as

PIST(σ, βr, ε) ∝ exp[−βrE(σ) + gr], (8)

where gr denotes a weight factor depending

only on the inverse temperature.

An explicit update scheme of the irreversible

simulated tempering algorithm consists of two

steps. One is the update scheme of an original

configuration σ for a fixed inverse temperature

and the lifting variable with a conventional

MCMC algorithm such as the Metropolis-

Hastings algorithm and cluster algorithms.

The other is the update scheme of the inverse

temperature and the lifting variable for fixed

σ, described as follows:

(a) Let the current state be (σ, βr, ε) and the

candidate of the next inverse temperature

βl is determined with the probability q
(ε)
r,l

given as follows:

q
(ε)
1,2 = q

(ε)
R,R−1 = 1, (9)

q
(ε)
r,r±1 =

1± δε

2
, (10)

for 1 < r < R, and q
(ε)
r,l = 0 otherwise.
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(b) Accept the next state (σ, βl, ε) with the

probability W
(ε)
r,l given by

W
(ε)
r,l = min

1, q
(−ε)
l,r

q
(ε)
r,l

PIST(σ, βl,−ε)
PIST(σ, βr, ε)

 .

(11)

(c) If the trial (b) is rejected, flip the lifting

variable ε with the probability Λ
(ε)
r given

by

Λ(ε)
r =

max
[
0, ε

∑
ε′=±

∑
l ̸=r ε

′q
(−ε′)
r,l W

(−ε′)
r,l

]
(
1−

∑
l ̸=r q

(ε)
r,l W

(ε)
r,l

)
(12)

and set (σ, βr,−ε) as the next state.

(d) If the trial (c) is also rejected, set the cur-

rent state as the next state.

Note that the acceptance probability satis-

fies SDBC with respect to the target distri-

bution PIST(σ, βr, ε) and the global balance

condition is fulfilled in the above procedure.

The parameter δ in the proposal probability

q
(ε)
r,l controls the violation of DBC. When δ is

set to zero, DBC is restored.

In Ref. [15], the irreversible simulated tem-

pering algorithm has been applied to the two-

dimensional ferromagnetic Ising model as a

benchmark. It is numerically shown that the

relaxation dynamics of the inverse tempera-

ture qualitatively changes from diffusive to bal-

listic behavior by violating DBC and conse-

quently the autocorrelation time of the mag-

netization is reduced several times compared

to the conventional simulated tempering for

the case with an ideal choice of the weight fac-

tors. Thus, it is confirmed that the violation

of DBC can improve the efficiency of simulated

tempering algorithm. It is worth investigating

whether the irreversible simulated tempering

works effectively in a complex system such as

spin glasses.

3 Event-chain Monte Carlo

The event-chain Monte Carlo (ECMC) algo-

rithm is also one of the algorithms breaking

DBC and is based on the idea of the lifting.

The ECMC is proposed originally for hard-

sphere systems[20] and is subsequently gener-

alized for more general particle systems such as

soft-sphere and LennardJones particles[22, 23],

and continuous spin systems such as XY and

Heisenberg spin models[24, 25]. This effi-

cient algorithm enables us to simulate about

106 particles for the hard-sphere systems[21]

and 106 spins for frustrated Heisenberg spin

systems[26] in equilibrium. In this section, we

describe the ECMC algorithm for particle sys-

tems and continuous spin systems.

3.1 Event-chain algorithm

We first explain the ECMC algorithm for hard-

sphere systems in d dimensions. In the al-

gorithm, the lifting parameter is defined as

U = (i, v⃗) with i and v⃗ being the particle

index and d dimensional vector, respectively.

The particle i specified by the lifting param-

eter U moves along the direction v⃗ in U un-

til it collides with another particle, and once

the collision occurs the collided particle starts

to move along the same direction v⃗. Conse-

quently, many particles are moved along the

same vector v⃗ until the total displacement of

particles reaches ℓ, which is a tuning parameter

of this algorithm. The displacement until the

collision is uniquely determined by the configu-

ration and the vector v⃗, and thus the dynamics

of particles is deterministic for a given v⃗, the

initial particle i, and ℓ. This algorithm breaks

detailed balance because particles move along

the same direction v⃗ and never go back to the

former position [20].

For the hard-sphere systems, the pair po-

tential is 0 for non-overlapping configurations

and infinity for otherwise. Then, one can eas-

ily define a collision event as the time when

the distance between the moving particle i and
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another particle is twice of the particle radius.

However, for general particle systems with an

interaction potential such as Lennard–Jones

systems, the pair potential for arbitrary dis-

tance always takes a finite value, and thus an

event of collision cannot be defined in the same

manner as the case of hard-sphere systems.

The determination of a collision is essential for

generalizing the ECMC method to more gen-

eral interacting systems. This is possible by us-

ing three concepts[23]; the factorized Metropo-

lis probability, infinitesimal moves, and an

event-driven Monte Carlo scheme [27]. With

the help of the factorization of the Metropo-

lis transition probability, one can determine

whether a proposal of a new state is accepted

or not for each interacting pair independently,

and the proposal is accepted only if all the

interacting pairs accept it. If a new state is

proposed by infinitesimally changing from the

current state, then at most a particle interact-

ing with the moving one reject the proposal;

the probability that more than two pairs si-

multaneously reject the proposal with infinites-

imal displacements is higher-order infinitesi-

mal. Thus, we determine a collision as the

probabilistic rejection which is caused by up to

one interacting pair. Furthermore, an event-

driven Monte Carlo scheme [27] allows us to

compute the displacement until a collision ef-

ficiently. Consequently, a collision is defined

in a probabilistic manner, and the ECMC al-

gorithm is generalized for particle system with

interaction potentials.

3.2 ECMC for general interacting

systems

We present the ECMC algorithm for more gen-

eral systems including some interacting parti-

cles system and also interacting spins systems

in Algorithm 1. The Hamiltonian of the sys-

tem considered in the algorithm is given by

H (x⃗0, · · · , x⃗N−1) =
∑
i<j

Eij (x⃗i, x⃗j) ,

Algorithm 1 ECMC for more general poten-

tials
1: Input N , ℓ, {x⃗0, · · · , x⃗N−1},
{Eij (x⃗i, x⃗j)}i,j=0,··· ,N−1, β

2: for t ≥ 0 do

3: (i, v⃗)← Random(N, p)

4: s← 0

5: while s < ℓ do

6: (δ, j)← Displacement(i, v⃗)

7: if s+ δ < ℓ then

8: (x⃗i, s)← (Tv⃗ (δ) x⃗i, s+ δ)

9: i← j

10: else

11: (x⃗i, s)← (Tv⃗ (ℓ− s) x⃗i, ℓ)

12: end if

13: end while

14: end for

15: function Random(N, p)

16: Sample i uniformly from {0, · · · , N − 1}
17: Sample v⃗ uniformly from {v⃗0, · · · , v⃗p−1} re-

turn (i, v⃗)

18: end function

19: function Displacement(i, v⃗)

20: for k ∈ {0, · · · , N − 1} \ {i} do
21: Sample r uniformly from (0, 1]

22: Compute δk that satisfies

r = exp

(
−β
∫ δk

0

max

[
0,

∂Eik (Tv⃗ (s) x⃗i, x⃗k)

∂s

]
ds

)

23: end for

24: j ← argmink δk
25: δ ← δj return (δ, j)

26: end function

where x⃗i represents a position vector of i-th

particle for particle systems, or components of

i-th spin for continuous spin systems. In the al-

gorithm, p is the number of degrees of freedom

per one particle or one spin, and {v⃗i}i=0,··· ,p−1

is a set of linearly independent vectors. The

state x⃗i is updated by an operator Tv⃗ (s); for

particle systems Tv⃗ (s) x⃗i = x⃗i + sv⃗, and for

continuous spin systems Tv⃗ (s) x⃗i = Rv⃗ (s)xi
where Rv⃗ (s) is a rotation matrix around the

vector v⃗ with an angle s. In this way, spin sys-

tems and particle systems are described by an

ECMC algorithm on an equal footing.

It turns out that the ECMC algorithm out-
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Figure 2: Linear-size dependence of charac-

teristic time of susceptibility autocorrelation func-

tion in a three-dimensional Heisenberg ferromagnetic

model obtained by ECMC and Metropolis-Hastings

algorithm[25].

performs other conventional algorithms in var-

ious systems [20, 22, 28, 24], and one can sim-

ulate very large systems consisting of about

106 particles or spins in equilibrium by using

the algorithm. We applied ECMC to a ferro-

magnetic Heisenberg ferromagnetic model in

three dimensions, in which the algorithm re-

duces the value of the dynamical critical ex-

ponent z from z = 2 to z ≃ 1 [25], shown

in Fig. 2. In contrast to cluster algorithms,

the ECMC method works efficiently for frus-

trated spin systems. In fact, using a large scale

simulation with ECMC, phase transitions in a

Heisenberg spin model of a chiral helimagnet

with the Dzyaloshinskii–Moriya (DM) interac-

tion in three dimensions are studied[26]. In

the presence of a magnetic field perpendicu-

lar to the axis of the helical structure, it is

found that there exists a critical point on the

temperature and magnetic-field phase diagram

and that above the critical point the system

exhibits a phase transition with strong diver-

gence of the specific heat and the uniform mag-

netic susceptibility.
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Figure 3: Temperature dependence of the specific

heat of a three-dimensional chiral helimagnetic model

under the external field h and the amplitude of DM

interaction D/J = 1. The lattice is a cuboid and the

total number of spins is N = 8L3.

Quite recently, the ECMC algorithms have

been developed for further generalization,

which allows to simulate systems with three-

and multi-body interactions. It is, how-

ever, still difficult to perform systems with

anisotropic interactions. A naive implemen-

tation leads to multiple collisions yielding that

the event chain splits into many chains, which

is difficult to handle. In order to extend the

ECMC algorithm for more complex systems

such as polymers and protein problems, a cer-

tain key concept is required is required.
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