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Abstract

Multiscale simulation of entangled polymer

melt flow has been developed based on the

smoothed particle hydrodynamics model and

the dual slip-link model. A kernel gradient free

method and a particle shifting method were

implemented to improve the accuracy of the

macroscopic fluid dynamics and stabilize the

multiscale simulation. We have investigated an

effect of the polymer chain length on the fluid

dynamic behavior. Since the longer chain has

the longer correlation time, the non-linearity in

the macroscopic field is enhanced in the longer

chain case.

1 Introduction

Flow prediction of polymer melt is important

for industrial processing [1–3]. Microscopic

polymer dynamics has a long correlation time

between a past state and the current state,

and the flow histories of polymer chain affect

the macroscopic flow dynamics. The micro-

scopic polymer dynamics should be considered

to predict the macroscopic flow dynamics of

polymer melt. It is, however, difficult to in-

clude the microscopic polymer dynamics into

the macroscopic flow dynamics because there

are large scale differences on space and time be-

tween microscopic polymer dynamics and the

macroscopic flow dynamics.

Micro-macro bridging approaches have been

done by several groups in two decades and

they have succeeded to treat simple viscoelas-

tic fluids without entanglements of polymer

chains [4–10] and also with entanglements [11].

We have proposed a multiscale simulation

technique to treat the entangled polymer melt

flow using a different approach [12–15]. Our

multiscale simulation is based on the fluid par-

ticle simulation and the coarse-grained entan-

gled polymer dynamics simulation. Each fluid

particle has a polymer simulator, where the

states of polymer chains are different from

those in the other fluid particles. At each posi-

tion, the stress tensor σ is calculated from the

polymer simulator in the fluid particle. The

macroscopic flow field v is updated through

the momentum balance equation, and then the

velocity gradient tensor κ = (∇v)T is calcu-

lated at each fluid particle. Under the renewed

velocity gradient tensor κ, polymer dynamics

simulation is performed and the stress tensor is

renewed. The macroscopic states and the mi-

croscopic states are updated alternately in the

multiscale simulation. This way is same with

the heterogeneous multiscale method that the

several time steps of molecular dynamics simu-

lation fits to the one time step of fluid dynam-

ics simulation [16–21].

To consider the flow history of poly-

mer chain, the macroscopic fluid dynam-

ics is solved using the fluid particle simula-

tion. The smoothed particle hydrodynam-

ics (SPH) method is widely used to simulate

the fluid dynamics of simple liquids and poly-

mer melts [22–28]. However, SPH is defective

to calculating the spatial gradient of physical
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variables near wall boundaries and surfaces.

To correct the gradient of field variables in

SPH, a corrective SPH method [29,30], a mod-

ified SPH (MSPH) method [31], and a finite

particle method (FPM) [32] have been devel-

oped. These methods have succeeded in calcu-

lating the gradient of field variables more ac-

curate than the original SPH method. Very

recently, a kernel gradient free (KGF) method

has been developed [33]. This new method

does not need to calculate in literally the ker-

nel gradient. KGF improves the gradient of

field variables and KGF is more stable than

MSPH and FPM. Since the spatial homogene-

ity of fluid particles affects the accuracy of fluid

particle simulation, we use a particle shifting

method (PSM) [34] to correct and distribute

the fluid particles equally at every time steps.

KGF and PSM improves the accuracy of the

multiscale simulation.

The correlation time of entangled polymer

chains with length 
 is proportional to 
3.5

and is larger than of the order of millisec-

onds. Such a long time scale is not accessible

with the conventional coarse-grained molecular

dynamics simulation, so called Kremer-Grest

model [35]. Based on the reptation theory with

the some extensions [36–39], several entangled

polymer dynamics simulators have been devel-

oped [40–47]. In our multiscale simulation, we

use the dual slip-link model [44]. The merit to

use the dual slip-link model is that the model

can predict the rheological properties of the

standard polymer chains, such as polyethylene

and polystyrene, the algorithm is simple to

simulate the entangled polymer dynamics, and

the model does not require much computation

time.

We investigate the effect of the polymer

chain length to the macroscopic field. In the

next section, we review the procedure of the

multiscale simulation, the kernel gradient free

method, the particle shifting method, and the

dual slip-link model. Then, we discuss on the

flow dynamics around a obstacle. This prob-

lem is same with the previous works [13, 15].

We discuss the effect of the polymer chain

length difference using the revised multiscale

simulation method.

2 Multiscale Simulation

The multiscale simulation is based on the fluid

particle simulation and the polymer dynam-

ics simulation. Polymer melt flow is described

with the dynamics of fluid particle according

to the following equations.

dx

dt
= v, (1)

ρ
dv

dt
= ∇ · σ + ρg, (2)

where x is the position, v is the velocity, ρ is

the density, σ is the stress tensor, and g is the

external force. The density ρ(x) is obtained

using the kernel function W (|x′ − x|, h) to in-

terpolate the particle x and the neighboring

particles x′,

ρ(x) =

∫
dx′mW (|x′ − x|, h), (3)

where m is the mass of fluid particle. We use

the following kernel function,

W (r, h) =

⎧⎨
⎩

Ad

(h
√
π)d

[
e−r2/h2 − e−4

]
, r ≤ 2h,

0, r > 2h,

(4)

where d is the dimension of the system, and

the normalization coefficient Ad is calculated

from
∫
drW (|r|, h) = 1, and found to be A1 =

1.04823, A2 = 1.10081 and A3 = 1.18516. The

half value of width of kernel function h is set to

1.5δ0 where δ0 is the initial distance between

fluid particles. The stress tensor σ consists

of the hydrostatic pressure term, the viscous

stress term, and the polymeric stress term:

σ = −pI + σs + σp. (5)

The hydrostatic pressure p is determined from

the density deviation:

p− p0 = C2(ρ− ρ0), (6)
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where C is the sound velocity, p0 and ρ0 are the

reference pressure and density, respectively.

The viscous stress coming from the molec-

ular vibration ignored in the coarse grained

polymer dynamics simulation is assumed to

σs = ηs
{
(∇v)T +∇v

}
where ηs the vis-

cous constant. The polymeric stress σp is ob-

tained from the coarse grained polymer dy-

namics simulation. The polymeric stress σp

depends on the polymer chain conformation in

the fluid particle.

2.1 Kernel Gradient Free Method

The original SPH method uses the following

approximation for calculating the gradient of

field variable:

〈∇f(x)〉 =
∫

dx′(∇x′f(x′))W (7)

=

∫
dSf(x′)W −

∫
dx′f(x′)∇x′W

(8)



∫

dx′f(x′)∇xW, (9)

where W = W (|x′ − x|, h) is the kernel func-

tion interpolating fluid particles. From eq. (7)

to eq. (9), we use the partial integral and

the change of variables. The surface integral

in eq. (8) is assumed to be zero because the

kernel function is zero at the kernel boundary.

When the fluid particles exist near the bound-

aries, e.g. the wall boundary or the free sur-

face boundary, this assumption fails since the

kernel boundary does not correspond to the

boundary of integral. When the surface in-

tegral is not equal to zero, the original SPH

method can not calculate the gradient of field

variables accurately.

The kernel gradient free (KGF) method has

succeeded in calculating the gradient of field

variable accurately when the surface integral is

not equal to zero. The KGF method is based

on the Taylor expansion of field variable:

f(x′) = f(x) + r ·∇f(x) +
1

2
rr : ∇∇f(x)

+O(|r|3), (10)

where r = x′ − x. Multiplying W (|r|, h) to

eq. (10) and integrating over x′, we get∫
dx′f(x′)W = f(x)

∫
dx′W

+∇f(x) ·
∫

dx′rW

+
1

2
∇∇f(x) :

∫
dx′rrW.

(11)

Substituting W to rW and rrW in eq. (11),

we get∫
dx′f(x′)rW = f(x)

∫
dx′rW

+∇f(x) ·
∫

dx′rrW

+
1

2
∇∇f(x) :

∫
dx′rrrW,

(12)

and∫
dx′f(x′)rrW = f(x)

∫
dx′rrW

+∇f(x) ·
∫

dx′rrrW

+
1

2
∇∇f(x) :

∫
dx′rrrrW.

(13)

The eqs. (11) - (13) can be summarized to

matrix equation A ·X = B;

A =

⎛
⎜⎝ 〈1〉 〈r〉 〈rr〉

〈r〉 〈rr〉 〈rrr〉
〈rr〉 〈rrr〉 〈rrrr〉

⎞
⎟⎠ , (14)

X =

⎛
⎜⎝ f

∇f
1
2∇∇f

⎞
⎟⎠ , (15)

B =

⎛
⎜⎝ 〈f〉

〈rf〉
〈rrf〉

⎞
⎟⎠ , (16)

where 〈O〉 = ∫
dx′O(x′)W . We can solve the

matrix equation A ·X = B using LU decom-

position and obtain ∇f not 〈∇f〉. Note that

the kernel gradient ∇W does not appear in

eqs. (14) - (16). That is why this method is

called as the kernel gradient free method.
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In the simulation, 〈O〉 is computed using the

following discrete form.

〈O(xi)〉 =
∑
j∈Ωi

mj

ρj
O(xj)W (|xij |, h), (17)

ρi = ρ(xi)

=
∑
j∈Ωi

mjW (|xij |, h), (18)

where Ωi represents the cutoff region with the

radius 2h from the i-th particle xi, and xij =

xj − xi.

2.2 Particle Shifting Method

When the fluid particles get closer, tensile in-

stability occurs, where the particles make a

string like structure and these strings repel

each other [48]. The tensile instability af-

fects the simulation results and should be sup-

pressed. The pressure between the fluid par-

ticles does not disturb the tensile instability

because the force acting on the fluid particles

is the pressure gradient and the pressure gradi-

ent is zero between these close fluid particles.

We need an extra trick to correct the particle

positions to distribute uniformly.

The particle shifting method is one of the

choices to suppress the tensile instability. The

following direction vector n represents the di-

rection of the nonuniform distribution of the

fluid particles around x.

n(x) =

∫
dx′r̂W, (19)

r̂ =
r

|r| . (20)

When we shift the particle at x to the direction

n, the particle distribution closes to uniform

one. Using the direction vector n, we define

the shift vector Δx:

Δx = εδ0n, (21)

where ε is the shift parameter. After the po-

sition and velocity of fluid particle is updated

from (xold,vold) to (x∗,v∗), according to (1)

and (2), respectively, we apply the particle

shifting method:

xnew = x∗ +Δx, (22)

vnew = v∗ +Δx ·∇v. (23)

Eq. (23) is obtained from the Taylor expan-

sion of v(x + Δx) around x. When ε is less

than 0.001, the tensile instability appears. On

the other hand, when ε is larger than 0.1, the

fluid particles make a crystalline structure and

the dynamics of fluid particles shows stick-slip

motion. The shift parameter ε should be set

between 0.001 to 0.1.

2.3 Polymer Dynamics Simulation

The dynamics of entangled polymer chains is

handled with the dual slip-link model. The

dual slip-link model is placed on each fluid el-

ement and undergoes flow history that is non-

uniform flow changing at each position and

time.

In the dual slip-link model, the number of

entanglements on a polymer chain in equilib-

rium state is proportional to the polymer chain

length. The polymer chain with length L is

separated to Z sub-vectors ri, (i = 1, · · · , Z)

with unit length a representing the constraint

tube between two entanglement points, or slip-

links, and two free end segments s1 and s2:

L = s1 + s2 +
∑Z

i=1 |ri|. Each slip-link has

a pair of slip-link on the other polymer chain.

The entangled polymer chain can move along

the constraint tube.

When a shear flow applied to a chain, the

tube segments are affinely deformed:

dri
dt

= κ · ri, (24)

κ = (∇v)T, (25)

where κ is obtained from the macroscopic fluid

dynamics simulation. The length of polymer

chain is assumed to follow the differential equa-

Activity Report 2015 / Supercomputer Center, Institute for Solid State Physics, The University of Tokyo

38



tion with Gaussian white noise g1(t):

dL

dt
= − 1

τR
(L− L0)

+ g1(t) +

(
dL

dt

)
affine

, (26)

τR = τ0Z
2, (27)

L0 = Z0a
2, (28)

where τR is the Rouse relaxation time cor-

responding to the relaxation time of non-

entangled polymer chain, τ0 is the unit time

of the slip-link model, L0 is the equilibrium

length.
(
dL
dt

)
affine

represents the difference of

chain length between before and after affine

deformation in eq. (24). The thermal fluc-

tuation of polymer chain causes the center of

mass motion along the tube segments. This is

called as reptation. The reptation is achieved

through updating the free end segments with

Gaussian white nose g2(t):

ds1
dt

=
1

2

(
dL

dt

)
+DRg2(t), (29)

ds2
dt

=
1

2

(
dL

dt

)
−DRg2(t), (30)

where the first term represents the contribu-

tion from the chain difference from eq. (26)

and the second term represents the reptation

motion. DR =
√

2a2/3π2τeZ is the diffusion

constant of Rouse chain. Note that

〈gi(t)〉 = 0, (31)

〈gi(t)gj(t′)〉 = δ(t− t′)δij . (32)

When s1 or s2 is less than 0, the end of en-

tanglement point and the pair of it disappear.

On the other hand, when s1 or s2 is larger

than a, the new entanglement point is created

on the free end segment and the pair on the

other polymer chain, selected randomly, are

created. The stress tensor σp is obtained from

the dyadic of the tension of polymer chain and

the direction of the tube segment averaging

over the all chains in the fluid particle:

σp = G0〈
Z∑
i=1

riri
a|ri| 〉, (33)

where G0 = (15/4)kBT/V is the unit shear

modulus, kB is the Boltzmann constant, T is

the temperature, V is the unit volume.

2.4 Simulation Conditions

We consider 2-dimensional polymer melt flow

around an cylindrical obstacle as same as the

previous works [13, 15]. The cylinder with the

radius R is made of particles fixed on the space.

To disturb penetration of the fluid particles

into the inside of the cylinder, the spaces be-

tween wall particles are smaller than δ0. Since

the density of the wall particles is higher than

the bulk fluid, fluid particles are difficult to

penetrate into the cylinder. At initial condi-

tion, fluid particles are placed at regular inter-

vals with space δ0 and polymer chains in the

fluid particles are equilibrium states.

We impose the periodic boundary condition

to the macroscopic system. The mass center

of polymer chains in the microscopic system

corresponds to the position of the macroscopic

fluid particle. Since the polymer chains in the

dual slip-link model are in the virtual space,

we can ignore the diffusion of polymer chains

between fluid particles.

We can obtain the zero-shear viscosity of

dual slip-link model from the Green-Kubo for-

mula.

ηp = G−1
0

∫ ∞

0
dt〈σ(t+ τ)σ(τ)〉τ . (34)

In the multiscale simulation, the zero-shear

viscosity is modified to include the dissipa-

tion from the molecular vibration less than the

tube:

η = ηp + ηs. (35)

ηs represents the viscosity coming from the dis-

sipation. We choose η as a characteristic vis-

cosity in the multiscale simulation.

The time units of macroscopic simulation

and microscopic simulation are set to the

same. The velocity gradient obtained from the
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macroscopic simulation is used to the micro-

scopic simulation without any conversion fac-

tor. The stress unit of macroscopic simulation

is normalized so that the characteristic viscos-

ity η is equal to one.

Number of fluid particles in the system is

3,548 and each fluid particle has 1,000 poly-

mer chains. Since the polymer simulators on

each fluid particle are independent from the

others, parallel computing is effective for the

multiscale simulation. Using 3,456 cores on su-

percomputer systems at the SCC-ISSP for 24

hours, we can run the simulation sufficiently

larger than the relaxation times of the short

and long polymer chain melts.

We discuss the low Reynolds number flow

where the flow around cylinder is expected to

be symmetric. The Reynolds number is Re =

ρUR/η where ρ is the density of fluid, U is the

maximum velocity of the flow, R is the radius

of the cylinder, and η is the characteristic vis-

cosity. Polymer melt has the relaxation time τ

that the polymer chain stretch and orientation

persist after cessation of applying the defor-

mation. The polymer melt flow is character-

ized with the two dimensionless numbers, the

Weissenberg number and the Deborah number.

The Weissenberg number Wi = τ γ̇ is the ra-

tio of the viscous force and the elastic force.

The Deborah number De = τ/τo = τU/R is

defined as the ratio of the relaxation time τ

and the characteristic time scale of observation

τo. We expect that the shear viscosity ηp de-

creases when the Weissenberg number is larger

than one, and the non-symmetric flow field is

observed when the Deborah number is larger

than one.

3 Nonlinear Flow Behavior

We compare the results of a short polymer melt

with Z = 10 and a long polymer melt with Z =

20. The relaxation time of Z = 10 is about 530

and that of Z = 20 is about 6400, obtained

from the correlation function of the end-to-end
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Figure 1: Velocity fields of (a) short chain melt

and (b) long chain melt at steady state.

vector of polymer chain. The relaxation time

of the long polymer melt is 23.5 times larger

than that of the short polymer melt. We use

the normalized viscosity η and apply the same

external force g to the fluid particles so that

the Reynolds number is much less than one.

The velocity fields at steady state are sum-

marized in Fig. 1. The Reynolds number is less

than 0.1 in this condition. The maximum ve-

locity of the long polymer melt is higher than

that of the short polymer melt. We expect that

the viscosity coming from the polymeric stress

decreases in the long polymer melt because of

the shear thinning phenomena.

The reason why the maximum velocity of

the long chain melt is larger than that of the

short chain melt will be found from comparing

the stress tensors. Since each component of

the stress tensor is not rotationally invariant,

we obtain the eigen values and vectors of the
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stress tensor, and compare them.

The largest eigen value and vector of the

stress tensor are shown in Fig. 2 and Fig. 3, re-

spectively. The eigen value field is almost sym-

metric among the upstream and downstream

in the short polymer melt, while that is clearly

not symmetric in the long polymer melt.

The asymmetry of the eigen value field is

coming from the Deborah number. The Deb-

orah number is higher than one in the long

polymer melt and is less than one in the short

polymer melt. The eigen vectors both in the

short and long polymer melts are aligned to

the same direction in the vicinity of the cylin-

der where the Weissenberg number is larger

than one. In the short polymer melt, how-

ever, the orientation is random away from the

cylinder where the Weissenberg number is less

than one. Polymers are extended and aligned

in the long polymer melt rather than the short

polymer melt, resulting in the shear thinning

phenomena.

4 Summary

We have reviewed the multiscale simulation

that is composed of the fluid particle simu-

lation and the polymer dynamics simulation.

The fluid particle simulation has been solved

using the kernel gradient free method and the

particle shifting method. These two methods

stabilize the fluid particle simulation. The dual

slip-link model has been used as the polymer

dynamics simulation in the multiscale simula-

tion. This model has a full chain picture and

can treat the entanglement between the poly-

mer chains. We have shown a flow around a

cylinder in cases of the short and long poly-

mer melts. The long polymer melt has shown

the shear thinning phenomena while the short

polymer melt has not. The asymmetric fields

of the largest eigen value and the correspond-

ing eigen vector of the stress tensor have sug-

gested the polymer chain stretch and orienta-

tion around the obstacle. Especially in the
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Figure 2: The largest eigen values of the stress

tensor of (a) short chain melt and (b) long

chain melt at steady state.

long polymer chain melt, the asymmetry is

clear because the relaxation time or the cor-

relation time of the long polymer chain melt is

23.5 times longer than that of the short poly-

mer chain melt.

To decrease the noise, the number of poly-

mer chains in the polymer dynamics simulation

should be increased from the point of view of

the central limit theorem in probability the-

ory. We have developed the ensemble average

method using several replica simulation boxes

for a fluid particle to obtain the stress tensor

averaging over the replica [49]. This method

needs 10 to 100 times larger super computer

than that we used here and has been only ap-

plied to one dimensional problem. We will ap-

ply the noise reduction technique to the mul-

tiscale simulation of two or three dimensional

problem in the future using a super computer
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Figure 3: The eigen vectors (corresponding to

Fig. 2) of the stress tensor of (a) short chain

melt and (b) long chain melt at steady state.

with more than 1,000,000 cores.
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