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graphene family

From the 2D graphene,
“scissoring and wrapping”
can give rise to 0D bucky
balls, 1D nanotubes and
3D graphites.

Does the graphene
family carry the blood
of magnetism!




chiral vector

By identifying all lattice points related by integer multiples
of the chiral vector C' = (n,,n, ) with n, > n, > 0, the two-

dimensional graphene sheet is mapped to the chiral single-
wall carbon nanotube.

Just roll it up!




topological nanomagnet

We tound the ground state of the semi-
infinite carbon nanotube has quan-
tized magnetic moment,

which is dictated by the chiral vector
but does not depends on the hopping
amplitude and the interaction strength!




outline
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Hints and Motivations
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Disordered Magnetism at the Metal-Insulator Threshold
in Nano-Graphite-Based Carbon Materials
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Grinding up the graphite fibers
gives rise to magnetic mo-

ment and thus Curie-like spin
susceptibility.
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With heat treatment, the bro-
ken edges glue back. Due to the
suppression of open edges, the
spin susceptibility becomes dia-
magnetic again.
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Shibayama et al.
Phys. Rev. Lett. 84, 1744 (2000)




week ending
VOLUME 91, NUMBER 22 PHYSICAL REVIEW LETTERS 28 NOVEMBER 2003

Induced Magnetic Ordering by Proton Irradiation in Graphite

P Esquinazi,>l< D. Spemann, R. Hohne, A. Setzer, K.-H. Han, and T. Butz

Institut fiir Experimentelle Physik 11, Universitdt Leipzig, Linnéstrasse 5, D-04103 Leipzig, Germany
(Received 1 July 2003; published 24 November 2003)

Magnetic moments show up in highly oriented polycrystalline
graphite (HOPG) after proton bombardment. The magnitude of
the moment is roughly proportional to the irradiation time.
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Esquinazi’s group
Phys. Rev. Lett. 91,227101 (2003)




family blood?

Carbon Foam Reveals a Fleeting
Magnetic Personality 2 APRIL 2004 VOL 304 SCIENCE

But Giapintzakis says extensive tests
on the nanofoam show that impurities
could account for at most 20% of the
magnetism present. “We are sure we
do not have an impurity effect,” he says.

Bolstering the case, Giapintzakis adds,
the team has found that other normally

_ + 3 nonmagnetic materials such as boron
Condensed from superheted carbon atoms 1o aloo. magnetic at room nitride show similar properties when
remperature fora few hours. subjected to the same laser treatment.

Science 304,42 (2004)
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graphene nanoribbon

Louie’s group
Nature 444, 347 (2006) a L-regi : R-region b L-region T R-region
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Using electric field to manipulate the magnetic
properties in zigzag graphene nanoribbon.




some observations...

® Electron-electron interaction can be
important in graphene and related

materials.

® The presence of open boundaries seems
to enhance the magnetic instability and
gives rise to ferromagnetic moments.

® How to quantify the moment then!




Stage |

Lieb’s Theorem




Hubbard model

To describe the electronic correlations in semi-infinite
carbon nanotube, we start with the Hubbard model.

The Hubbard Hamiltonian contains two parts:
hopping and on-site interaction,

where t 1s the hopping amplitude between two
sublattices and U > 0 is the on-site repulsive
interaction.




Lieb’s theorem

For the repulsive Hubbard
model on bipartite lattice,
there exists particle-hole
symmetry at half filling.

E. H. Lieb
Phys. Rev. Lett. 62, 1201 (1989)

Lieb showed that the ground state is unique
up to the (25+1)-fold degeneracy from the
non-zero spin S.




finding S...

Since the previous conclusion is independent of
the strength of interaction U and the hopping t,
Lieb’s obtained the ground-state spin S from the
Heisenberg model in strong coupling

weak coupling

E. H. Lieb
Phys. Rev. Lett. 62, 1201 (1989)




ambiguity arises!

25 =2

The counting is OK
for

but becomes
ambiguous when the

lattice sites become
infinite...




Stage |l

Weak Coupling Analysis




weak coupling

Due to the lattice charge anomaly, we cannot
determine the spin of the ground state. Thus,
let’s try the opposite weak-coupling limit.

strong coupling

For simplicity, let me start with the
semiconducting nanotubes.
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Dirac Hamiltonian

Ignore the on-site interaction momen-
tarily, the Schrodinger equation for the

hopping part can be casted into the
SUSY form

(o 3)(2)-2(2)

where ¢, , 5 1s the wave fucntion on sub-
lattice A/B and Q,Q" are the super-
charge operators.

Huang,VWu and Mou
Phys. Rev. B 70, 205408 (2004)




nodal structure

/N /N NN

local density

/\ T /\ of states

Note that the wave functions have nodal structure
since they are SUSY ground states.
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projection onto the edge

In weak coupling, we can integrate out the bulk states and derive
the effective theory by projecting onto the edge states. The
oround state wave function takes the general form,

\If($1041, ...,ﬂ?NeOzNe) — S:S:A(Zlﬁl’ ...,iNeﬁNe)
ta fBa

X(I)’hﬁl (CL’l, al)“'(I)iNeﬁNe (ZCNG, CkNe),

where the summations carry over all possible edge configurations.
Since all edge states are pinned at zero energy, the hopping Hamil-
tonian after projection vanishes. Only the interaction survives,

He — UZPe[na:Tnxl]Pe Z 0.




fully polarized edge

While the general form looks messy, the actual
solution of the ground-state wave function turns
out to be rather simple.

Since the spatial part is fully antisymmetric, the
particles never meet each other on the same
spot and achieve the minimal energy zero.

23



Stage |l

Counting Edge States




generalized Bloch theorem

In the presence of open boundary, the
displacement operator is no longer
unitary DD # DTD. Thus, the Bloch

theorem needs some modification,

N«

\IJ+(n) — Zci (I)z Z,;-n,

1=1

where @®; are (n, + n,)-dimensional
eigenvectors and /N. is the number of
decaying modes with |z;| < 1. The
coeflicients ¢; must satisty the n, con-

straints due to the open boundary.

Pereg-Barnea and Lin
Europhys. Lett. 69, 791 (2005)




solving for z

Making use of the generalized Bloch theorem, the problem is re-
duced to the search for the null space of the (n,+n, )-dimensional
supercharge,

Q(z) =0 — detQ(z)=0.

In general, the determinant would give (n, + n,)! terms of the

polynomials of z. However, by appropriate choice of the unit cell,
the determinant is greatly simplified.




C=(10,0)

1

Zigzag dots

Taking (10,0) zigzag carbon
nanotube as an example,
there are in

the complex plane. Only
of them are decaying
modes with |z|<I.




other family members

In fact, for nanotubes with parallel chiral vectors,
the solutions fall onto the universal contour in
the complex plane.




zigzag family contour

The contour in the complex plane for the
zigzag family with C=(nx,0).
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eye-ball contours

1 .
armchair

0.5
Zigzag |

Contours in the complex z-plane for nanotubes
with different chiralities (from zigzag to armchair).
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metallic nanotube

For (15,0)-zigzag nanotube, ID Dirac fermion

we have four edge states
coupled to two conducting
channels. The effective
theory in the spin sector is
similar to the Kondo model.

J<0
*

| D Dirac fermion




quantized moments

5 6 /7 8 9 10 11 12 13
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Making it Realistic...




first-principles approach

Can the beautiful quantization of magnetic moment
be an artifact of Hubbard model? What happens in a
more realistic carbon nanotube!

® Hopping in limit may not
be sufficient.

® Coublomb interaction is likely not
screened and remained

® |t's a generalized mean-field theory...

34



Weiss mean-field theory

"\ M

T. T

Para

In Weiss mean-field theory, the magnetization is
determined by some self-consistent equation and
often changes continuously with temperature and

other parameters.




mean-field expectation

5 6 /7 8 9 10 11 12 13




magnetization profile

® | SDA calculations show
that the ground state is
ferromagnetic.

® Moments are localized
near the edge.

® Nodal structure of the
density profile is robust.

C=(10,0)



metallic nanotube

The conclusions remain the same except
the magnetization extends further into the
bulk as expected.




surprise!




Conclusions

® Magnetic moments spotted at
the edge of generic single-wall
carbon nanotubes.

® [he moments are quantized and
topologically robust.

® [ime to rethink the physics in
graphene related materials due to
electronic correlations.




topological nanomagnet

We tound the ground state of the semi-
infinite carbon nanotube has quan-
tized magnetic moment,

which is dictated by the chiral vector
but does not depends on the hopping
amplitude and the interaction strength!




Backup Slides




building qubits...

® Blue gates define the
quantum dots and give
rise to bound states.

® Carriers in the bound
states act as qubits.

® Red gates control the
exchange interaction

between the qubits. Burkard's group
Nature Phys. 3, 192 (2007)




flat-band ferromagnetism

However, at nanoscale, edge topology and
electronic correlations are important.

A _ , y
Cmajoriyspin ] oy | 9¢ °Flat band comes from

- mrenvsen - quantum caging effect!

®Ferromagnetic ground
state arises from mutual
interactions between
electrons.
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Lieb’s theorem

Let us detour a bit and consider the attractive Hubbarde model.
The hopping part is the same but the interaction changes sign,

:_tz Cro ya_l_cya ro _‘U‘anT__ nﬁl_%)‘

(z,y)

Making use of the spin-reflection positivity from the on-site inter-
action, Lieb proved several interesting and important theorems.

One of them reads: E H Lieb

Phys. Rev. Lett. 62, 1201 (1989)

For attractive on-site interaction U<0,
the ground state is unique with S=0.




particle-hole symmetry

Now coming back to the repulsive Hubbard model. At half filling
(n) = 1, the model is particle-hole symmetric. Since all states
with different S all have one representative in S°* = 0 subspace,
it is sufficient to consider states with Ny = N| = N, /2.

Perform the particle-hole transformation in the spin-up sector
while leaving the spin-down intact, ¢, — e(az)cLT, where e(z) =1
for sublattice A and e(x) = —1 for sublattice B. Since the density
operator transforms as nzr — 1 — nyt,

U (st — 5) (et — 5) = ~Ulnap — 3)(mey — 3)

the repulsive interaction is mapped to the attractive one.




unique ground state

The particle-hole symmetry is crucially important to establish the
link. After the transformation, the pseudo-spin operator is 7/°" =

Z

%(NS — Ny — N|) = 0. Once the particle-symmetry is broken, the
mapping generates a finite magnetic field and the ground state is
no longer a pseudo-spin singlet 7t = 0.

Therefore, Lieb’s theorem also shows that the
ground state of the repulsive Hubbard model at
half filling is also except the total spin S is
left to be determined.




lattice charge anomaly

This ambiguity is similar to the chiral anomaly we encounter
in quantum field theory. Suppose we define the lattice charges
qa(x),qp(x) in the following way, ga(x) = 0, 4 and qp(x) = 0. B.
The Lieb theorem simply states that the total spin is

25 = ZQA(ZL‘) — ZQB(CE).

Since the summation diverges, one needs to regulate the summa-
tions to obtain finite value. After regularization, the difference
between the total lattice charge is

3

28 =

We know this cannot be the right answer since it is not an integer
for semiconducting carbon nanotubes.
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gapped spectrum

hole-like particle-like . . . .
excitations excitations Consider the simple Dirac Hamil-

tonian with interactions coupling

the fields with opposite chiralities.

l The spectrum E(k) = k2 + A? is
A

known to have a finite gap A to all
excltations.

HD:(@DL W_)(p_om »+ 1A




midgap states

However, the Schrodinger equation allows midgap states with dis-
persion E(k) = VAZ — k2 < A,

wR/L(x) — CR/L e .

While the Hamiltonian does support these midgap states, they do
not satisfies the boundary condition |1)(d00)|* < oo.

Since the open boundary can be viewed as the
impurity potential in the unitary limit, the midgap
states occur right at the middle of the gap, i.e. at
Zero energy.




curvature effect

For nanotube with small radius, the curvature
effect destroys the perfect quantization.

When cut into the flattened nanoribbon
geometry, the quantization is recovered.
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