Dynamics of one-dimensional Bose liquids in Y-junction and its related system: Andreev-like reflection and absence of the Aharonov-Bohm effect

2008/6/10

Akiyuki Tokuno (Hokkaido Univ.) Collaborator Masaki Oshikawa (ISSP) Eugene Demler (Harvard Univ.)

Phys. Rev. Lett. 100, 140402 (2008)

1. Introduction: One-dimensional Bose liquid and Tomonaga-Luttinger liquid

- 2. Y-junction systems for Bose liquid
- **3. Ring-type interferometer for Bose liquid**
- 4. Summary

INTRODUCTION

1D bose system

Lieb-Liniger model (integrable)

E. H. Lieb, W. Liniger (1963), E. H. Leib (1963)

INTRODUCTION

Low-energy effective theory and Tomonaga-Luttinger liquid for Bose systems

TL liquid is universal description in low-energy physics of 1D quantum systems. F. D. M. Haldane (1981)

1D quantum systems corresponding to TL parameter.

4

Y-junction system and experiment

BEC beam splitter for guided trapping atoms.

D. Cassettari et al. (2000)

- Atom chip technology realizes Y-shape trap potential.
- Trapped BEC can be guided as well.
- Application as BEC splitter.

3D imaging and contour map for trap potential.

Set up the system

branch 3

Simplify the Y-shaped Bose liquid system.

- Branches are completely 1D.
- Bosons filled in entire system. \rightarrow TL liquid description is applicable.
- Repulsive interacting bosons. \rightarrow Luttinger parameter **K>1**.

$$\mathcal{H}_{j} = \int dx \left[-\frac{\hbar^{2}}{2m} \psi_{j}^{\dagger} \frac{\partial^{2}}{\partial x^{2}} \psi_{j} + \frac{U}{2} \rho_{j}^{2} \right]$$

Low-energy physics of Y-junction

$$\mathcal{H} = \mathcal{H}_{\text{bulk}} + \mathcal{H}_{\text{boundary}}$$

Bulk Hamiltonian: TL liquid
$$\mathcal{H}_{\text{bulk}} = \sum_{j=1,2,3} \frac{\hbar v}{2\pi} \int dx \left[K \left(\frac{\partial \theta_j}{\partial x} \right)^2 + \frac{1}{K} \left(\frac{\partial \varphi_j}{\partial x} \right)^2 \right]$$

Boundary Hamiltonian

It is a non-trivial problem to express the concrete form of boundary Hamiltonian.

How to discuss the junction problem.

Transport through a potential barrier. Nayak et al. (1999)

Boundary physics : boundary condition + perturbation

Boundary Condition

Primary boundary condition: current conservation

 $J_1(0,t) + J_2(0,t) + J_3(0,t) = 0$

What boundary conditions are suitable in low-energy limit?

Relevant !!

Boundary condition

Simplest boundary condition: decoupled branches $J_1(0,t) = J_2(0,t) = J_3(0,t) = 0$

Perturbation: Tunneling between branches

Scaling dimension = 1/K < 1

lower energy scale

Arrival point: strongly coupled branches

$$\psi_1(0,t) = \psi_2(0,t) = \psi_3(0,t)$$

Perturbation: Backscattering <u>Scaling dimension = 4K/3 > 1</u> Irrelevant !!

<u>Renormalization group flow goes to the fixed point</u> <u>corresponding to "Strongly coupled limit".</u>

Calculation of dynamics

Time evolution

For expectation values of fields \rightarrow classical linear wave.

$$\langle \rho_j(x,t) \rangle = \bar{\rho} + \rho_j^L(x+vt) + \rho_j^R(x-vt).$$

Initial condition

Branch 1 $\rho_1^L(x,0) = \mathcal{D}_0(x)$ $\rho_1^R(x,0) = 0$

Branch 2, 3

$$ho_{2,3}^L(x,0) = 0$$

 $ho_{2,3}^R(x,0) = 0$

Boundary condition

Current conservation $J_1(0,t) + J_2(0,t) + J_3(0,t) = 0$

Strongly coupled junction $\rho_1(0,t) = \rho_2(0,t) = \rho_3(0,t)$

Reduced to classical linear wave problem with boundary <u>conditions.</u>

Andreev-like reflection can be also observed in boson systems.

2008/6/10

Extension to double Y-junction problem

Symmetrically connect two of branches of each Y-junction. \downarrow Quantum ring with leads (Ring-type interferometer) system

- "Effective" magnetic flux inside ring.
 → Bosons couple with gauge field.
- Sufficiently large size 2L of the ring.
- Bosons are filled in entire system.

Φ

RING-TYPE INTERFEROMETER

Example: single particle problem

Probability

$$|\psi_{0}e^{i\pi\frac{1}{\Phi_{0}}} + \psi_{0}e^{-i\pi\frac{1}{\Phi_{0}}}|^{2}$$
$$= 2|\psi|^{2}\left[1 + \cos 2\pi\frac{\Phi}{\Phi_{0}}\right]$$

Interference $\Phi = \Phi$

$$\Phi = \Phi_0 \times (\mathbb{Z} + 1/2)$$

Then, transmission is zero.

Transmission for free fermion

- J.-B. Xia (1992)
- Flux vs Transmission

No transmission at $\Phi = \Phi_0 \times (Z+1/2)$. Independent of momentum.

Aharonov-Bohm effect

2008/6/10

Boundary condition: Current conservation + strongly coupled limit

Left side boundary conditionRight side boundary condition $J_L(0,t) = J_U(0,t) + J_D(0,t)$ $J_R(0,t) = J_U(L,t) + J_D(L,t)$ $\psi_L = \tilde{\psi}_U = \tilde{\psi}_D$ $\psi_R = \tilde{\psi}_U e^{i\pi\Phi/\Phi_0} = \tilde{\psi}_D e^{-i\pi\Phi/\Phi_0}$

13

RING-TYPE INTERFEROMETER

Low-energy effective theory

Bosonization formula

$$\psi \sim e^{i\theta}, \quad \rho = \bar{\rho} + \pi^{-1} \partial_x \varphi$$

Branch Hamiltonian

$$\mathcal{H}_{ring}^{U,D} = \frac{v}{2\pi} \int_0^{L/2} dx \left[K \left(\frac{\partial \theta_{U,D}}{\partial x} \right)^2 + \frac{1}{K} \left(\frac{\partial \varphi_{U,D}}{\partial x} \right)^2 \right]$$
$$\mathcal{H}_{lead}^{L,R} = \frac{v}{2\pi} \int dx \left[K \left(\frac{\partial \theta_{L,R}}{\partial x} \right)^2 + \frac{1}{K} \left(\frac{\partial \varphi_{L,R}}{\partial x} \right)^2 \right]$$

Bosonized boundary conditions

Left side boundary condition $\partial_x \theta_L = \partial_x \theta_U + \partial_x \theta_D$ $\varphi_L = \varphi_U + \varphi_D$

Right side boundary condition

$$\partial_x \theta_R = \partial_x \theta_U + \partial_x \theta_D$$

 $\varphi_R = \varphi_U + \pi \Phi / \Phi_0 = \varphi_D - \pi \Phi / \Phi_0$

Flux appears only in boundary condition.

 \rightarrow absence in boundary conditions for density.

RING-TYPE INTERFEROMETER

Low-energy effective theory

Symmetric & anti-symmetric combination separate the system into two parts.

Physics of symmetric part

Analogous to inhomogeneous TL liquid

D. L. Maslov and M. Stone (1995), I. Safi and H. J. Schultz (1995)

Symmetric field: center of mass of packets in the ring.

 \rightarrow Transport between the leads.

Physics of anti-symmetric part

TL liquid with twisted boundary condition.

Quantum ring problem and persistent current.

Magnetic flux works as twisting anti-symmetric field.

drive persistent current.

RING-TYPE INTERFEROMETER

Summary of dynamics

No interference \rightarrow Absence of Aharonov-Bohm effect. Magnetic flux inside ring \rightarrow Just driving persistent current

Y-junction for Bose liquid

- Bosons filled in Y-shaped potential.
- Dynamics of density packet in steady boson sea.

Negative reflection & Enhancement of total transmission

Ring-type interferometer for Bose liquid

- Dynamics of density packet in ring-type interferometer.
- Effective magnetic flux inside ring.
- Strongly coupled boundary condition at junctions.

Absence of AB effect.

