Shot noise induced by spin accumulation

Graduate School of Science, Osaka University

Tomonori Arakawa

Collaborators;

Collaboration started since 2011

Japan

J. Shiogai (Institute for Materials Research, Tohoku University)

K. Kobayashi, M. Maeda (Osaka University)

T. Ono (Kyoto University)

M. Kohda, J. Nitta (Tohoku University)

Germany

M. Ciorga, M. Utz, D. Schuh, D. Bougeard , D. Weiss (University of Regensburg)

Acknowledgment;

This work was partially supported by the JSPS Funding Program for Next Generation World Leading Researchers (GR058) and Grant-in-Aid for Scientific Research on Innovative Areas (25103003).

First experimental demonstration of shot noise induced by spin accumulation

Introduction

- What is Shot noise and how to measure it
- Shot in mesoscopic system
- Potential of Shot noise in spintronics

Our result

- Remind for spin current
- Experimental results

Conclusion and future plan

Measuring Noise =Measuring Current fluctuation

Y. M. Blanter and M. Büttiker, *Phys. Rep.* **336**, 1 (2000).

The noise is the signal

Powerful tool to investigate transport processes

Review: Y. M. Blanter and M. Büttiker, Phys. Rep. 336, 1 (2000).

Shot noise in mesoscopic field

□Statistical properties of quantum channels

Fractional quantum Hall effect

- L. Saminadayar et al., PRL 79, (1997).
- R. de-Picciotto et al., Nature 389, (1997).
- M. Hashisaka et al., PRL 114, (2015).

Cooper pair transport

X. Jehl et al., Nature 405, 50 (2000).

Teruo Ono SPINTRONICS

Motivation

Spin dependent transport probed by Shot noise measurement

MESOSCOPICS

Probe

Shot noise measurement

Kensuke Kobayashi

Spintronics via Shot noise

Tunnel Magnetresistance effect

Spin filter effect

Experiment

<u>T. Arakawa et al., Appl. Phys. Lett.</u> 98, (2011).

T. Tanaka, <u>T. Arakawa et al.</u>, APEX **5**, (2012).

Theory

Kai Liu et al., PRB 86, (2012).

Direct proof for Coherent tunneling theory

Experiment

M. Kohda et al., Nat. Commun. 3, (2012).

Estimation of Spin polarization

Spintronics via Shot noise (Theory)

A few experimental reports

A lot of theoretical predictions

Spin flip process in diffusive conductor

E. G. Mishchenko, PRR B 68, (2003).W. Belzig and M. Zareyan, PRB 69, (2004).A. Lamacraft, PRB 69, 081301 (2004).

Shot noise of spin current

B. Wang *et al.*, PRB **69**, (2004).O. Sauret and D. Feinberg, PRL **92**, (2004).

Spin accumulation

J. Meair et al., PRB 84, (2011).

Spin Hall effect

R. L. Dragomirova et al., EPL 84, (2008).

S. I. Erlingsson and D. Loss, PRB 72, (2005).

Spin torque phenomenon

A. Chudnovskiy et al., PRL 101 (2008).

etc....

Shot noise induced by spin accumulation

T. Arakawa *et al.*, PRL **114**, 016601 (2015).

What's happen in the Shot noise

More general case

Direct measurement

of Spin current and $\Delta \mu$

without ferromagnet or Invers spin Hall effect

Sample structure

lateral all-semiconductor spin valve device

M. Ciorga *et al.*, PRB **79**, 165321 (2009). J. Shiogai et al., APL 101, 212402 (2012).

Characteristic of the sample

F. J. Jedema et al., Nature 410, 345 (2001).

Set up for shot noise measurement

Expected signal

Measured noise S_1

High bias region

Charge current

Current

$$I_{\rm P}(V) \text{ and } I_{\rm AP}(V) \text{ reconstruct} \qquad I_{\rm C} = \frac{I_{\rm P} + I_{\rm AP}}{2} \propto \left(\frac{\mu_{\uparrow} + \mu_{\downarrow}}{2} - \mu_{0}\right) \qquad S_{\rm C} \equiv \frac{S_{\rm P} + S_{\rm AP}}{2}$$
Noise
$$Spin \text{ current} \qquad I_{\rm S} = \frac{I_{\rm P} - I_{\rm AP}}{2P} \propto \left(\mu_{\uparrow} - \mu_{\downarrow}\right) \qquad S_{\rm S} \equiv \frac{\left|S_{\rm P} - S_{\rm AP}\right|}{2P}$$

 $S_{\rm S} \equiv \frac{\left|S_{\rm P} - S_{\rm AP}\right|}{2P}$

Relation between Noise and Current

Same Fano factor

charge and spin tunnel through the barrier as a single object

Origin of over heating

Spin injection process

What's happen in the presence of spin flip process

E. G. Mishchenko, Physical Review B 68, 100409 (2003).

Conclusion

□Shot noise due to the spin current through a tunnelling barrier was detected

□Our result indicates that charge and spin tunnel through the barrier as a single object

□The electron temperature increase due to spin injection was quantitatively estimated

Future vision

□ Spin current shot noise in various systems

sensitive probe for spin transport

Cooling the electron temperature

Coherent phenomena of Spin current