June 3rd 2015 Workshop on "New Perspectives in Spintronic and Mesoscopic Physics"

Quantum transport phenomena in 3D topological insulator thin films

Ryutaro Yoshimi A,

A. Tsukazaki ^B, M. Mogi ^A, K. Yasuda ^A,
Y. Kozuka ^A, J. Falson ^A, J. G. Checkelsky ^D, K. S. Takahashi ^C,
N. Nagaosa ^{A, C}, M. Kawasaki ^{A, C}, and Y. Tokura ^{A, C}

Univ. of Tokyo ^A, Tohoku Univ. ^B, RIKEN-CEMS ^C, MIT ^D

Introduction to Topological Insulator

Characteristics of topological surface state

Future application to spintronics device or quantum computation

Experiment on bulk single crystal

Y. Ando, Review in JPSJ (2013)

Thin film + FET device

Surface dominant transport
 *E*_F tuning in the Dirac state

Surface/interface degrees of freedom

 Controlling surface/interface (lift the degeneracy)
 by layered structure

Thin film device enable us to access the ideal
Dirac states of TI without bulk state
Surface/interface degrees of freedom shows up

Quantum transport in surface/interface states of TI 6

$(Bi_{1-x}Sb_x)_2Te_3$ (BST) thin film

Surface/Interface Dirac states in topological insulator 8

Detecting the interface Dirac state of TI

Tunneling spectroscopy on TI/non-TI *p-n* heterojunction

R. Yoshimi et al., Nature Materials 13 253 (2014)

n - InP

d I/d V in $(Bi_{1-x}Sb_x)_2Te_3/InP$ junctions

Landau level formation observed in tunneling spectra¹¹

- Oscillatory feature in $\Delta d I/d V$

- Landau levels ($n = 0, \pm 1$) due to interface Dirac dispersion ($\propto B^{1/2}$)

Ambipolar transport in FET device (x = 0.84)

- •Low temperature process (< 120 C°)
- •Gate dielectric by ALD at R.T.

• Ambipolar conduction by gate tuning $E_{\rm F}$ is modulated across Dirac point • mobility $\mu \sim 1,500 \ {\rm cm^2/Vs}, \ n \sim 4 \ {\rm x} \ 10^{11} \ {\rm cm^{-2}}$

Quantum Hall Effect in BST

R. Yoshimi, *et. al* Nature Commun. **6**,6627 (2015)

Temperature dependence

v = 0 state by LL at top/botom Dirac state

•weak *B* dependence in σ_{xy} plateau •Different environment of top and bottom state $\rightarrow \delta_{DP} \sim 50$ meV

Stabilization of v = 0 state in layered structure

Observation of Quantum Anomalus Hall Effect

QHE in magnetic/non-magnetic TI bilayer

Transport Phenomena at 0T

Magnetic field dependence

Summary

Dirac state

 $\sigma_{\rm xy} \, (e^2 / h)$ -2 -3 (e²/µ) 8.0 ^{ວັ} 0.4 0.0 -2 2 -4 $V_{\rm G}$ - $V_{\rm CNP}$ (V) R. Yoshimi, et. al Nature Commun. 6,6627 (2015) FET device of **BST** thin film **QHE** with $v = \pm 1, 0$

v = +1

0

 $V_{G} = -1.3 V$

 $V_{\rm G} = 1.17$

V_G = 1.17 V

5 10 15