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Overview
Coulomb charging effects on quantum transport in 
a Majorana device: 
„Topological Kondo effect“ with stable non-Fermi 

liquid behavior Beri & Cooper, PRL 2012

 With interactions in the leads: new unstable fixed point
Altland & Egger, PRL 2013

Zazunov, Altland & Egger, New J. Phys. 2014

 ‚Majorana quantum impurity spin‘ dynamics near strong 
coupling Altland, Beri, Egger & Tsvelik, PRL  2014

 Non-Fermi liquid manifold:  coupling to bulk
superconductor Eriksson, Mora, Zazunov & Egger, PRL 2014



Majorana bound states (MBSs)

Majorana „fermions“ 
 Non-Abelian exchange statistics

 Two MBS yield one (nonlocal) fermion
 Occupation of single MBS is ill-defined:
 Count state of MBS pair

 Realizable (for example) as end states of spinless
1D p-wave superconductor (Kitaev chain)
 Recipe: Proximity couple 1D helical wire to s-wave 

superconductor 
 For long wires: MBSs are zero energy modes

{ } ijji δγγ 2, =+= jj γγ

Beenakker, Ann. Rev. Con. Mat. Phys. 2013
Alicea, Rep. Prog. Phys. 2012

Leijnse & Flensberg, Semicond. Sci. Tech. 2012
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Experimental Majorana signatures
InAs or InSb nanowires expected to 
host Majoranas due to interplay of
• strong Rashba spin orbit field
• magnetic Zeeman field
• proximity-induced pairing

Oreg, Refael & von Oppen, PRL 2010
Lutchyn, Sau & Das Sarma, PRL 2010

Transport signature of Majoranas: 
Zero-bias conductance peak due 
to resonant Andreev reflection

Bolech & Demler, PRL 2007
Law, Lee & Ng, PRL 2009
Flensberg, PRB 2010

Mourik et al., Science 2012

see also: Rokhinson et al., Nat. Phys. 2012; Deng et al., 
Nano Lett. 2012; Das et al., Nat. Phys. 2012; Churchill et 
al., PRB 2013; Nadj-Perge et al., Science 2014



Zero-bias conductance peak

Possible explanations: 
 Majorana state (most likely)
 Disorder-induced peak Bagrets & Altland, PRL 2012

 Smooth confinement Kells, Meidan & Brouwer, PRB 2012

 Kondo effect Lee et al., PRL 2012

Mourik et al., Science 2012



Suppose that Majorana mode is realized…

 Quantum transport features beyond zero-bias 
anomaly peak? Coulomb interaction effects?

 Simplest case: Majorana single charge
transistor
 ‚Overhanging‘ helical wire parts serve

as normal-conducting leads
 Nanowire part coupled to superconductor

hosts pair of Majorana bound states
 Include charging energy of this ‚dot‘ γL γR



Majorana single charge transistor

 Floating superconducting ‚dot‘ contains two
Majorana bound states tunnel-coupled to
normal-conducting leads

 Charging energy finite

 Consider universal regime:
 Long superconducting wire:

Direct tunnel coupling between left and right
Majorana modes is assumed negligible

 No quasi-particle excitations:                                            
Proximity-induced gap is largest energy scale of
interest

Hützen et al., PRL 2012



Hamiltonian: charging term

 Majorana pair: nonlocal fermion
 Condensate gives another zero mode

Cooper pair number Nc, conjugate phase ϕ
 Dot Hamiltonian (gate parameter ng)

Majorana fermions couple to Cooper pairs
through the charging energy

RL id γγ +=

( )22 gcCisland nddNEH −+= +

Fu, PRL 2010



Tunneling 

 Normal-conducting leads: effectively spinless
helical wire
 Applied bias voltage V  = chemical potential 

difference
 Tunneling of electrons from lead to dot:
 Project electron operator in superconducting wire

part to Majorana sector
 Spin structure of Majorana state encoded in 

tunneling matrix elements
Flensberg, PRB 2010



Tunneling Hamiltonian

Source (drain) couples to left (right) Majorana only:

 respects charge conservation
 Hybridizations: 

Normal tunneling
 Either destroy or create nonlocal d fermion
 Condensate not involved

Anomalous tunneling
 Create (destroy) both lead and d fermion

& split (add) a Cooper pair 
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Absence of even-odd effect
 Without MBSs: Even-odd effect
 With MBSs: no even-odd effect!
 Tuning wire parameters into the topological phase

removes even-odd effect
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Noninteracting case: 
Resonant Andreev reflection
 Ec=0  Majorana spectral function

 T=0 differential conductance: 

 Currents IL and IR fluctuate independently, 
superconductor is effectively grounded

 Perfect Andreev reflection via MBS
 Zero-energy MBS leaks into lead

Bolech & Demler, PRL 2007
Law, Lee & Ng, PRL 2009
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Strong blockade: Electron teleportation

 Peak conductance for half-integer ng

 Strong charging energy then allows only two
degenerate charge configurations

 Model maps to spinless resonant tunneling
model

 Linear conductance (T=0):
 Interpretation: Electron teleportation due to

nonlocality of d fermion

heG /2=

Fu, PRL 2010



Topological Kondo effect

 Now N>1 helical wires:  M Majorana states tunnel-
coupled to helical Luttinger liquid wires with g≤1

 Strong charging energy, with nearly integer ng: 
unique equilibrium charge state on the island

 2N-1-fold ground state degeneracy due to Majorana
states (taking into account parity constraint) 
 Need N>1 for interesting effect! 

Beri & Cooper, PRL 2012
Altland & Egger, PRL 2013

Beri, PRL 2013
Altland, Beri, Egger & Tsvelik,  PRL 2014

Zazunov, Altland & Egger, NJP 2014



„Klein-Majorana fusion“

 Abelian bosonization of lead fermions
 Klein factors are needed to ensure anticommutation

relations between different leads
 Klein factors can be represented by additional Majorana

fermion for each lead
 Combine Klein-Majorana and ‚true‘ Majorana

fermion at each contact to build auxiliary fermions, fj
 All occupation numbers fj+fj are conserved and can

be gauged away
 purely bosonic problem remains…



Charging effects: dipole confinement
 High energy scales :  charging effects irrelevant
 Electron tunneling amplitudes from lead j to dot renormalize

independently upwards

 RG flow towards resonant Andreev reflection fixed point
 For :  charging induces ‚confinement‘
 In- and out-tunneling events are bound to ‚dipoles‘ with

coupling : entanglement of different leads
 Dipole coupling describes amplitude for ‚cotunneling‘ from

lead j to lead k
 ‚Bare‘ value

large for small EC
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RG equations in dipole phase
 Energy scales below EC: effective phase action

 One-loop RG equations

 suppression by Luttinger liquid tunneling DoS
 enhancement by dipole fusion processes

 RG-unstable intermediate fixed point with isotropic
couplings (for M>2 leads)
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RG flow

 RG flow towards strong coupling for
Always happens for moderate charging energy

 Flow towards isotropic couplings: anisotropies
are RG irrelevant

 Perturbative RG fails below Kondo temperature
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Topological Kondo effect
 Refermionize for g=1:

 Majorana bilinears
 ‚Reality‘ condition: SO(M) symmetry [instead of SU(2)] 

 nonlocal realization of ‚quantum impurity spin‘
 Nonlocality ensures stability of Kondo fixed point

Majorana basis for leads:      
SO2(M) Kondo model
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Minimal case: M=3 Majorana states
 SU(2) representation of „quantum impurity

spin“ 

 Spin S=1/2 operator, nonlocally realized in 
terms of Majorana states
 can be represented by Pauli matrices

 Exchange coupling (= dipole coupling) of this 
spin-1/2 to two SO(3) lead currents  →  

multichannel Kondo effect   

lkjklj
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Transport properties near unitary limit
 Temperature &  voltages < TK: 
 Dual instanton version of action applies near

strong coupling limit
 Nonequilibrium Keldysh formulation

 Linear conductance tensor

 Non-integer scaling dimension
implies non-Fermi liquid behavior even for g=1

 completely isotropic multi-terminal junction
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Correlated Andreev reflection
 Diagonal conductance at T=0 exceeds

resonant tunneling („teleportation“) value but 
stays below resonant Andreev reflection limit

 Interpretation: Correlated Andreev reflection
 Remove one lead: change of scaling

dimensions and conductance
 Non-Fermi liquid power-law corrections at 

finite T
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Fano factor
 Backscattering correction to current near unitary

limit for

 Shot noise:

 universal Fano factor, but different value than for
SU(N) Kondo effect

Sela et al. PRL 2006;  Mora et al., PRB 2009

kjk

y

k K

k
j MT

eI µδµδ 





 −−=

−

∑ 1
22



0=∑
j

jµ

( ) ( ) ( )( )kjkj
ti

jk IIItIedtS −=→ ∫ 00~ ωω

l

y

K

l
kl

l
jljk TMM

geS µµδδ
222 112~

−







 −





 −−= ∑



Zazunov et al., NJP 2014



Majorana spin dynamics

 Overscreened multi-channel Kondo fixed point: 
massively entangled effective impurity degree
remains at strong coupling: „Majorana spin“

 Probe and manipulate by coupling of MBSs

 ‚Zeeman fields‘                   describe overlap of 
MBS wavefunctions within same nanowire

 Zeeman fields couple to 

Altland, Beri, Egger & Tsvelik, PRL 2014
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Majorana spin near strong coupling

Bosonized form of Majorana spin at Kondo 
fixed point:

 Dual boson fields describe ‚charge‘ (not ‚phase‘) 
in respective lead

 Scaling dimension →   RG relevant
 Zeeman field ultimately destroys Kondo fixed point & 

breaks emergent time reversal symmetry
 Perturbative treatment possible for

( ) ( )[ ]00cos kjkjjk iS Θ−Θ= γγ

( )xjΘ

M
yZ

21−=

Kh TTT <<

K

M

K
h T

T
hT

2/

12








=dominant 1-2 Zeeman coupling:



Crossover SO(M)→SO(M-2)

 Lowering T below Th → crossover to another
Kondo model with SO(M-2) (Fermi liquid for M<5)
 Zeeman coupling h12 flows to strong coupling →               

disappear from low-energy sector
 Same scenario follows from Bethe ansatz solution

Altland, Beri, Egger & Tsvelik, JPA 2014

 Observable in conductance & in thermodynamic
properties

21,γγ



SO(M)→SO(M-2): conductance scaling
for single Zeeman component consider

(diagonal element of conductance tensor)

( )2,1≠jG jj012 ≠h



Multi-point correlations
 Majorana spin has nontrivial multi-point correlations at 

Kondo fixed point, e.g. for M=3 (absent for SU(N) case) 

 Observable consequences for time-dependent ‚Zeeman‘ 
field with
 Time-dependent gate voltage modulation of tunnel couplings
 Measurement of ‚magnetization‘  by known read-out methods
 Nonlinear frequency mixing
 Oscillatory transverse spin correlations (for B2=0)
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Adding Josephson coupling: Non Fermi 
liquid manifold

with another bulk superconductor: Topological 
Cooper pair box 
Effectively harmonic oscillator for
with Josephson plasma oscillation frequency 
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Eriksson, Mora, Zazunov & Egger, PRL 2014



Low energy theory

 Tracing over phase fluctuations gives two
coupling mechanisms:
 Resonant Andreev reflection processes

 Kondo exchange coupling, but of SO1(M) type 

 Interplay of resonant Andreev reflection and
Kondo screening for
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Quantum Brownian Motion picture
Abelian bosonization now yields (M=3)
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Quantum Brownian motion
 Leading irrelevant operator (LIO): tunneling

transitions connecting nearest neighbors
 Scaling dimension of LIO from n.n. distance d

 Pinned phase field configurations correspond to
Kondo fixed point, but unitarily rotated by resonant 
Andreev reflection corrections

 Stable non-Fermi liquid manifold as long as
LIO stays irrelevant, i.e. for

2

2
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dyLIO = Yi & Kane, PRB 1998
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Scaling dimension of LIO
 M-dimensional manifold of non-Fermi liquid 

states spanned by parameters
 Scaling dimension of LIO

 Stable manifold corresponds to y>1 
 For y<1: standard resonant Andreev reflection

scenario applies
 For y>1: non-Fermi liquid power laws appear in 

temperature dependence of conductance tensor
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Conclusions
Coulomb charging effects on quantum transport in 
a Majorana device: 
„Topological Kondo effect“ with stable non-Fermi 

liquid behavior Beri & Cooper, PRL 2014

 With interactions in the leads: new unstable fixed point
Altland & Egger, PRL 2013

Zazunov, Altland & Egger, New J. Phys. 2014

 ‚Majorana quantum impurity spin‘ dynamics near strong 
coupling Altland, Beri, Egger & Tsvelik, PRL  2014

 Non-Fermi liquid manifold:  coupling to bulk
superconductor Eriksson, Mora, Zazunov & Egger, PRL 2014
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