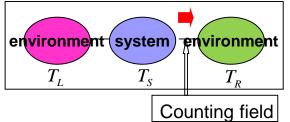
Non-adiabatic effect on the quantum heat flux control

Univ. of Yamanashi, Japan Chikako Uchiyama

(C.Uchiyama, PRE,89 (2014) 052108)

1.Overview of this talk

- Transport of quantum particles between two environments
 - Cyclic and out-of-phase control of
 - environmental temperatures
 - Use of full counting statistics



- Based on the quantum master equation under Born-Markov approximation
 - factorized initial condition
 - system-environment interaction

weak

infinitely short correlation time (memory-less)

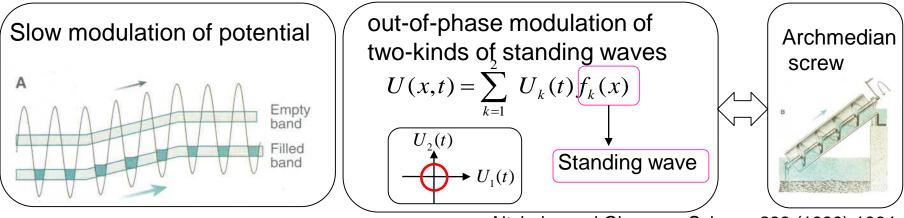
Non-adiabatic effect shows...

"memory" of initial condition of the relevant system ⇒Reminiscent effect

1. Backgrounds

Quantum pumping: (quantum transport between two environments)

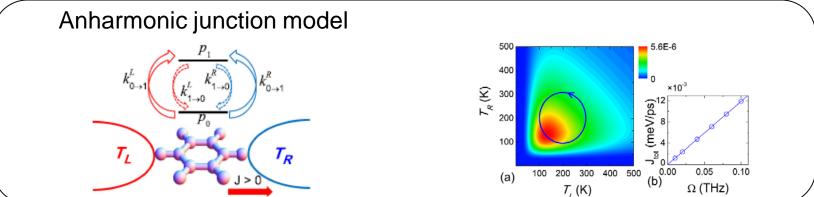
Adiabatic electron pump : Thouless, PRB27(1983)6083



Altshuler and Glazman, Science 283 (1999) 1864

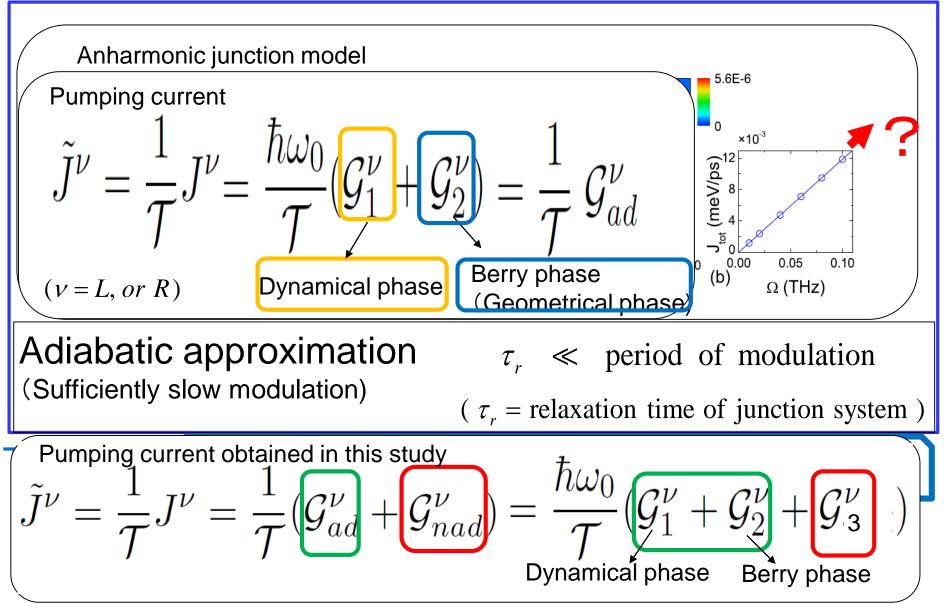
Experimental demonstration by Switkes et. al. Science 283(1999)1905

Adiabatic heat pump : Ren, Li, Hänggi, PRL104(2010)170601



3. Objective of this study

Berry-phase induced heat pump (Ren, Li, Hänggi, PRL104 (2010) 170601)



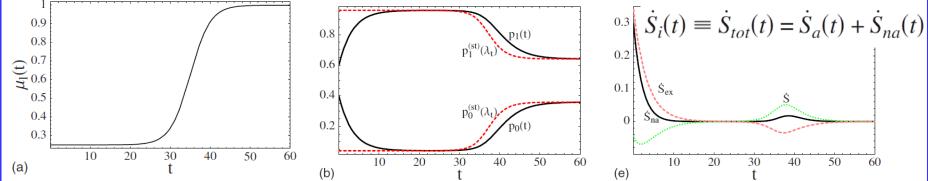
4. Motivation

Modulation protocol

Non-adiabatic effect on entropy production

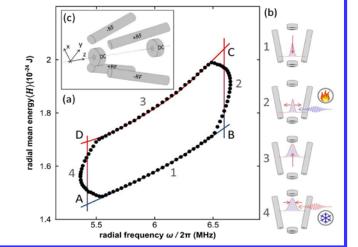
electron transfer via quantum dot (Esposito, Harbola, Mukamel, PRE76(2007)031132)

Population in quantum dot



Microscopic heat engine with ion trap

(O.Abah et.al. PRL109 (2012) 203006)



5.Conventional studies on quantum pumping

Stochastic pump	(interaction coefficient)	Sinitsyn -Nemenman (2007)
Heat pump	(temperature)	Ren-Li-Hänggi (2010)
Electron pump	(chemical potential)	Yuge-Sagawa-Sugita-Hayakawa(2012)

Full counting statistics M. Esposito, U. Harbola, and S. Mukamel, Rev. Mod. Phys. 81, 1665 (2009).

master equation under counting field

Adiabatic approximation

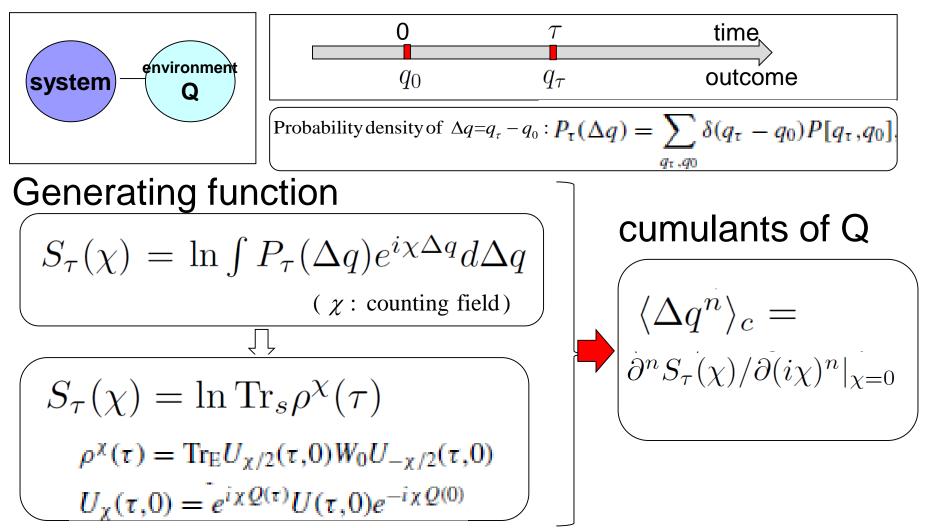
Eigenvalues of time evolution (non-Hermitian) matrix 0 stationary state non-zero non-stationary state

6. Formulation -1

Full counting statistics

M. Esposito, U. Harbola, and S. Mukamel, Rev. Mod. Phys. 81, 1665 (2009).

Two-point projective measurements on variable Q



6. Formulation -2Full counting statistics

Time-convolutionless master eq. (2nd order)

$$\frac{d}{dt}\rho(\chi,t) = -\frac{i}{\hbar}[\mathcal{H}_S,\rho(\chi,t)] + \sum_{\nu=L,R} (\frac{i}{\hbar})^2 \int_0^t d\tau \operatorname{Tr}_{\mathrm{E}}[\mathcal{H}_{SE}^{\nu}[\mathcal{H}_{SE}^{\nu}(-\tau),\rho_{\mathrm{E}}\rho(\chi,t)]_{\chi}]_{\chi}]$$

Transformation into the Hilbert-Schmidt space

c.f. V.I.Manko,G.Marmo,E.C.G.S.Sudarshan and F.Zaccaria, Phys. Lett. A 327(2004)353.

system

 $T_{\rm s}$

henvironment

 T_{R}

Counting field

$$\frac{d}{dt} \left| \rho(\chi, t) \right\rangle = \Xi^{\chi}(t) \left| \rho(\chi, t) \right\rangle \qquad \left| \rho(\chi, t) \right\rangle \qquad \left| \rho(\chi, t) \right\rangle = \left(\rho_{00}^{\chi}(t), \rho_{01}^{\chi}(t), \rho_{10}^{\chi}(t), \rho_{11}^{\chi}(t) \right)^{T} \right\}$$

environment

 T_L

Formal solution in the Hilbert-Schmidt space

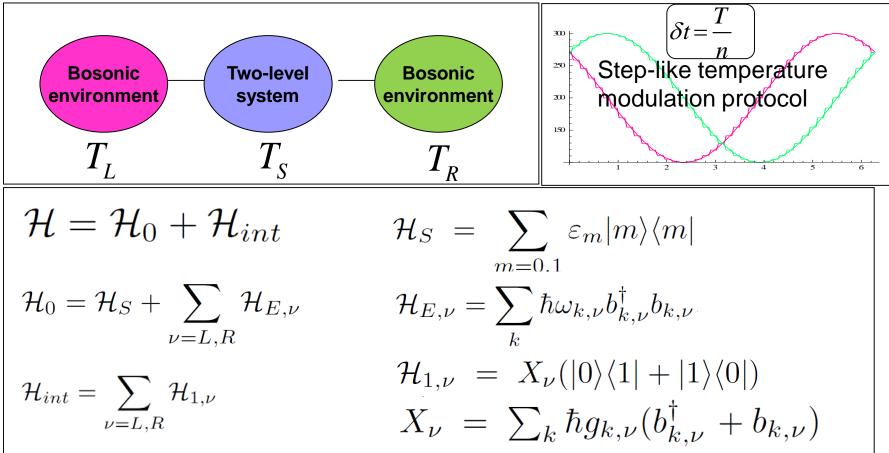
$$|\rho(\chi,t)\rangle = T_{+} \exp[\int_{0}^{t} dt' \Xi^{\chi}(t')] |\rho(\chi,0)\rangle$$

First moment of exchanged quantity between system and environment

$$\langle \Delta q \rangle_t = \langle 1 | \int_0^t dt' \left[\frac{\partial \Xi^{\chi}(t')}{\partial (i\chi)} \right]_{\chi=0} \rho(0,t') \rangle$$

7. Application

Anharmonic junction model



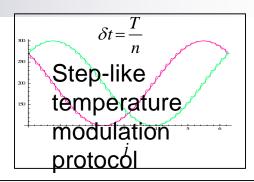
Ohmic spectral density

$$h_{\nu}(\omega) \equiv \sum_{k} g_{k,\nu}^{2} \delta(\omega - \omega_{k,\nu}) = s_{\nu} \omega \exp[-\omega/\omega_{c,\nu}]$$

7. Application -2

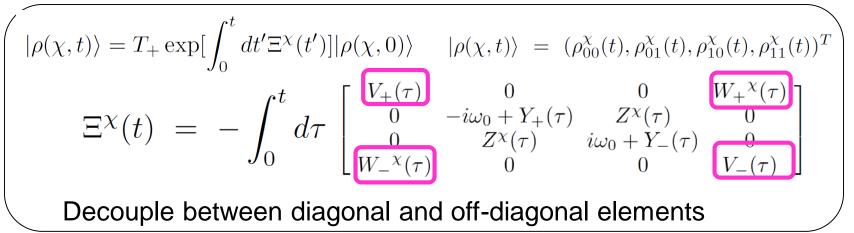
Full counting statistics

Time-convolutionless master eq. (2nd order)



$$\frac{d}{dt}\rho(\chi,t) = -\frac{i}{\hbar}[\mathcal{H}_S,\rho(\chi,t)] + \sum_{\nu=L,R} (\frac{i}{\hbar})^2 \int_0^t d\tau \operatorname{Tr}_{\mathrm{E}}[\mathcal{H}_{SE}^{\nu}[\mathcal{H}_{SE}^{\nu}(-\tau),\rho_{\mathrm{E}}\rho(\chi,t)]_{\chi}]_{\chi}]$$

Formal solution in Hilbert-Schmidt space



First moment of exchanged quantity between system and environment

$$\left(\langle \Delta q \rangle_t = -\int_0^t dt' \{ \left[\frac{\partial W_+^{\chi}(t')}{\partial(i\chi)} \right]_{\chi=0} \rho_{00}(t') + \left[\frac{\partial W_-^{\chi}(t')}{\partial(i\chi)} \right]_{\chi=0} \rho_{11}(t') \} \right) \quad \text{Diagonal element}$$

Markovian (long time) approximation $\frac{1}{2}$

$$\underbrace{\frac{d}{dt}\rho(\chi,t) = -\frac{i}{\hbar}[\mathcal{H}_S,\rho(\chi,t)] + \sum_{\nu=L,R} (\frac{i}{\hbar})^2 \int_0^t d\tau \operatorname{Tr}_{\mathrm{E}}[\mathcal{H}_{SE}^{\nu}[\mathcal{H}_{SE}^{\nu}(-\tau),\rho_{\mathrm{E}}\rho(\chi,t)]_{\chi}]_{\chi}]}_{\mathbf{h}_{\mathrm{E}}}$$

Formal solution in Hilbert-Schmidt space

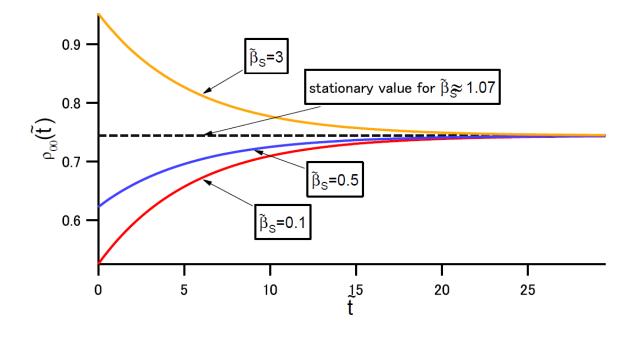
$$\begin{split} \left[\rho(\chi,t) \rangle &= T_{+} \exp[\int_{0}^{t} dt' \Xi^{\chi}(t')] | \rho(\chi,0) \rangle \quad | \rho(\chi,t) \rangle \\ &= \left[-\int_{0}^{\infty} d\tau \right] \begin{bmatrix} V_{+}(\tau) & 0 & 0 & W_{+}^{\chi}(\tau) \\ 0 & -i\omega_{0} + Y_{+}(\tau) & Z^{\chi}(\tau) & 0 \\ 0 & Z^{\chi}(\tau) & i\omega_{0} + Y_{-}(\tau) & 0 \\ 0 & 0 & 0 \end{bmatrix} \\ &= -\sum_{\nu=L,R} \left[\int_{-\Gamma_{\nu}}^{\Gamma_{\nu}} n_{\nu}(\omega_{0}) & -\Gamma_{\nu}(1 + n_{\nu}(\omega_{0}))e^{i\chi_{\nu}\hbar\omega_{0}} \\ -\Gamma_{\nu}n_{\nu}(\omega_{0})e^{-i\chi_{\nu}\hbar\omega_{0}} & \Gamma_{\nu}(1 + n_{\nu}(\omega_{0})) \end{bmatrix} \\ &= \Gamma_{\nu} = 2\pi h(\omega_{0}) \end{split}$$

First moment of exchanged quantity between system and environment

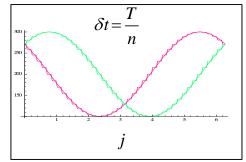
First moment of exchanged quantity between system and environment

$$\left\langle \Delta q^{\nu} \right\rangle_{t} = \hbar \omega_{0} \left\{ A^{\nu} \int_{0}^{t} dt' \rho_{00}(t') - B^{\nu} t \right\} \qquad A^{\nu} = -(k_{d}^{\nu} + k_{u}^{\nu}), \ B^{\nu} = -k_{u}^{\nu}$$

dynamics of $\rho_{00}(t)$ (population of lower level)



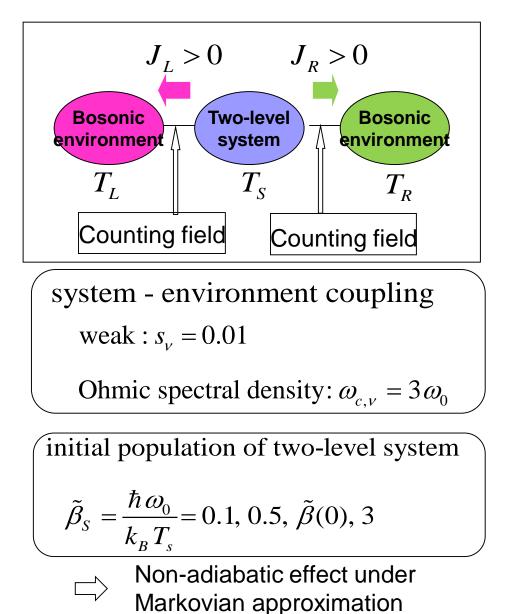
→ Step-like temperature modulation protocol is necessary to be considered

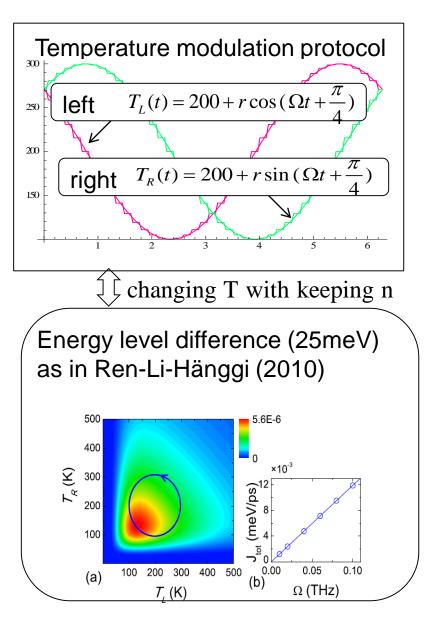


Pumping current with Non-adiabatic term

$$\begin{split} \tilde{J}^{\nu} &= \frac{1}{\mathcal{T}} J^{\nu} = \frac{1}{\mathcal{T}} (\mathcal{G}_{ad}^{\nu} + \mathcal{G}_{nad}^{\nu}) = \frac{\hbar\omega_{0}}{\mathcal{T}} (\mathcal{G}_{1}^{\nu} + \mathcal{G}_{2}^{\nu} + \mathcal{G}_{3}^{\nu}) \\ \xrightarrow{\text{Dynamical phase Geometrical phase Geometrica$$

8. Numerical evaluation

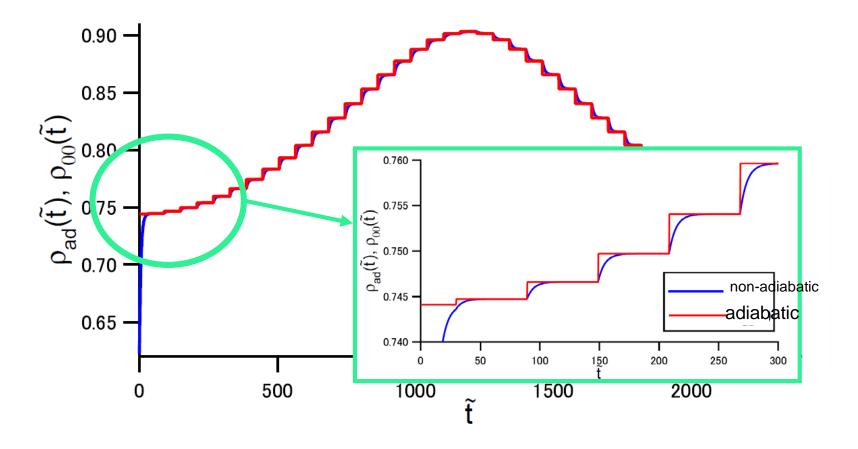




Time evolution of lower population -1

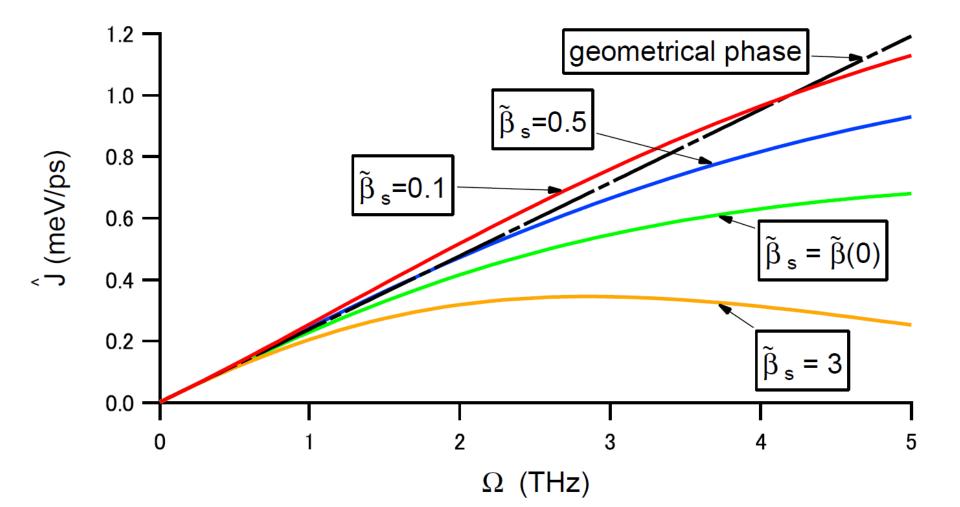
long interval case (lower frequency case) : Ω =0.1 THz

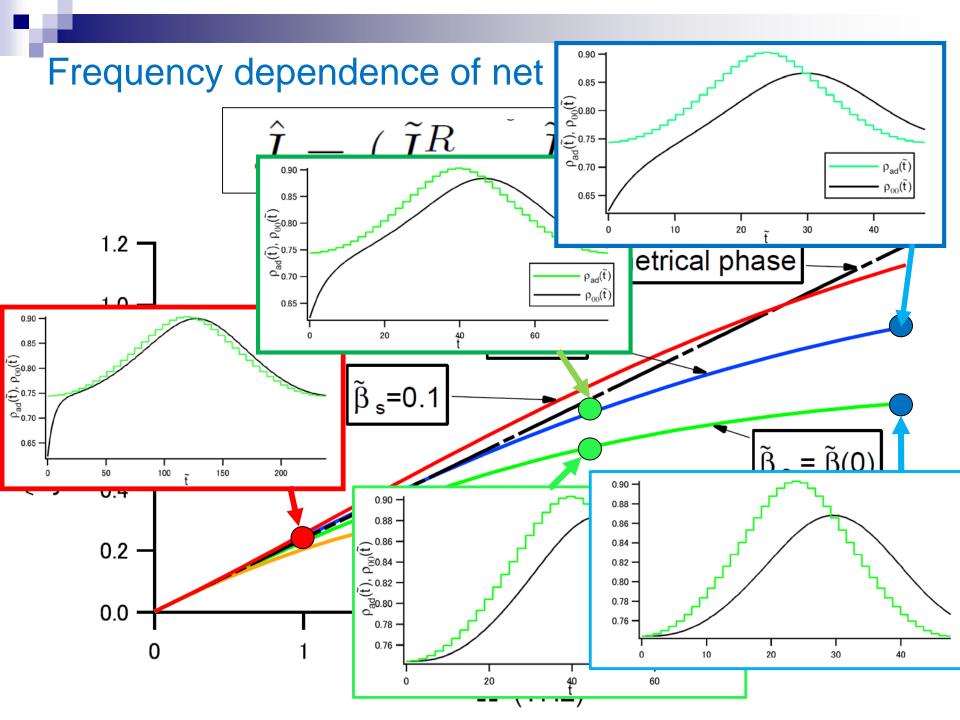
initial population of two-level system : $\tilde{\beta}_s = \frac{\hbar \omega_0}{k_B T_s} = 0.5$



Frequency dependence of net pumping current

$$\hat{J} = (\tilde{J}^R - \tilde{J}^L)/\hbar\omega_0$$





9. Conclusion and issues for future

- Formulation for quantum transport between system and environment including non-adiabatic effect (also non-Markovian effect)
- Non-adiabatic effect on quantum pumping under Markovian approximation
 - \Box Additive effect to adiabatic term: $J^{\nu} = \mathcal{G}^{\nu}_{ad} + \mathcal{G}^{\nu}_{nad}$
 - Reminiscent effect of past modulation

Dependence on initial condition

(C.Uchiyama, PRE, 89 (2014) 052108)

Issues for future

- 1. Non-Markovian effect
- 2. Effect of initial correlation