Some new analytical and numerical approaches to an SU(*N*) impurity Anderson model

Akira Oguri,¹ Miyuki Awane,¹ and Rui Sakano,² Osaka City University¹ and ISSP²

Collaboration in related works: Tatsuya Fujii²

Outline

- (1) Introduction
- (2) Model: SU(*N*) Anderson model
- (3) Green's function in high-energy solvable limits: $T \rightarrow \infty$ and $eV \rightarrow \infty$, exact results, analytic solution of finite-U NCA & atomic limit
- (4) Low-energy properties: 1/(N-1) expansion based on a perturbation in U

Zero order in 1/(N-1) : Hartree-Fock (HF) Leading order in 1/(N-1) : HF-RPA Higher order terms : *Fluctuations beyond HF-RPA*

- (5) Green's function at low temperatures: order $1/(N-1)^2$ and NRG results:
 - Renormalization factor Z, Wilson ratio R,, away from half-filling
 - Green's function $G(\omega)$ in the electron-hole symmetric case

(6) Summary

R. Sakano, T. Fujii, & A.O, PRB 83 (2011), A.O, R. Sakano, & T. Fujii, PRB 84 (2011), A.O, PRB 85 (2012),

A.O and R. Sakano, PRB 91 (2015),

A.O, M. Awane, & R. Sakano.

Introduction

Main interest: Kondo effect in quantum dots

Orbital degeneracy gives a variety to the Kondo physics:

SU(N) Anderson model describes the essential physics of orbital Kondo systems:

We study Green's function over a wide energy scales using several different approaches: 1/(N-1) expansion, Numerical renormalization group (NRG), Non-crossing approximation (NCA), and also an exact result in $eV \rightarrow \infty$

Two possible starting points

- 6^d Non-interacting limit: U = 01.0 U = 0.0 $\begin{array}{c} (\mathfrak{I}) & 0.8 \\ \mathfrak{I} & 0.6 \\ \mathfrak{I} & 0.4 \\ \nabla - & 0.2 \end{array}$ $G_m^0(\omega) = rac{1}{\omega - \epsilon_d + i\Delta}$ Green's function: $\varepsilon_d = -\Delta$ Impurity level becomes a resonance of the width $\Delta = \pi \rho V^2$ at $\omega = \varepsilon_d$ 0.0 -6 -4 -2 2 0 4 6
 - Atomic limit: $\Delta = 0$

$$\mathcal{H}_d = \sum_{m=1}^N \epsilon_d n_{dm} + \frac{U}{2} \sum_{\substack{m,m'\\(m\neq m')}} n_{dm'} n_{dm}$$

Eigenvalue:

$$E_Q = \epsilon_d Q + \frac{1}{2}Q(Q-1), \qquad 0 \le Q \le N$$

Impurity occupation $\langle n_{dm} \rangle$ discontinuously changes

as $\boldsymbol{\mathcal{E}}_{d}$ varies at $\boldsymbol{\mathcal{E}}_{d}$ = 0, -U, -2U, \cdots , -(N-1)U.

Coulomb Oscillation (period **U**)

 ω/Δ

Green's function at $T \rightarrow \infty$, and $eV \rightarrow \infty$

Atomic limit, NCA, and exact results

$$G_m(\omega) = \int_0^\infty dt \langle d_m(t) \, d_m^{\dagger}(0) \rangle \, e^{i(\omega + i\delta)t}$$

Atomic limit Green's function

Partition function:
$$\Xi = \sum_{Q=0}^{N} {N \choose Q} e^{-\beta E_Q}, \qquad E_Q = Q \epsilon_d + \frac{U}{2} Q (Q-1)$$

Green's function:
$$G_m^{\text{ATM}}(\omega) = \frac{1}{\Xi} \sum_{Q=0}^{N-1} {N-1 \choose Q} \frac{e^{-\beta E_Q+1} + e^{-\beta E_Q}}{\omega - (E_Q+1 - E_Q)}$$

• In the limit of
$$T \to \infty$$
;
 $G_m^{\text{ATM}}(\omega) \xrightarrow{T \to \infty} \frac{1}{2^{N-1}} \sum_{Q=0}^{N-1} {N-1 \choose Q} \frac{1}{\omega - (E_{Q+1} - E_Q)};$
 $\epsilon_{d,m} + UQ$
Continued Fraction form:

$$G_{m}^{ATM}(\omega) \rightarrow \frac{1}{\omega - \xi_{d,m} - \frac{\mathcal{B}_{1}\left(\frac{U}{2}\right)^{2}}{\omega - \xi_{d,m} - \frac{\mathcal{B}_{2}\left(\frac{U}{2}\right)^{2}}{\omega - \xi_{d,m} - \frac{\mathcal{B}_{2}\left(\frac{U}{2}\right)^{2}}{\cdots - \frac{1}{\omega - \xi_{d,m} - \frac{\mathcal{B}_{N-1}\left(\frac{U}{2}\right)^{2}}{\omega - \xi_{M-1}}}}}}$$

Exact equilibrium finite-U NCA Green's function in $T \rightarrow \infty$ limit

• At
$$T \to \infty$$
; $G_m^{NCA}(\omega) = G_m^{ATM}(\omega + iN\Delta)$,

Partial Fraction form:

$$G_m^{\mathsf{NCA}}(\omega) \xrightarrow{T \to \infty} \frac{1}{2^{N-1}} \sum_{\mathcal{Q}=0}^{N-1} \binom{N-1}{\mathcal{Q}} \frac{1}{\omega - \xi_{d,m} + i N \Delta}; \qquad \xi_{d,m} = \epsilon_{d,m} + \frac{(N-1)U}{2},$$

Continued Fraction form:

 $\mathcal{B}_k = k \left(N - k \right) \,,$

A.O and R. Sakano, A.O, PRB 91 (2015)

Coefficients: $A_k = N - 1 - 2(k - 1), \quad B_k = k(N - k), \quad C_k = 2k - 1.$

Hybridization asymmetry: $r \equiv \frac{\Gamma_L - \Gamma_R}{\Gamma_L + \Gamma_R}$. For r = 0, this expression also describes the exact equilibrium Green's function at $T \rightarrow \infty$

(\mathbf{r} varies impurity occupation from 1/2)

This result can be used for testing approximate methods in high-energy limit

The analytic solution has been obtained using an effective non-Hermitian Hamiltonian defined with respect to a *Liouville-Fock space, or a thermal field theory.*

A.O and R. Sakano, PRB 91 (2015), PRB 88 (2013) R.B.Saptsov & M.R.Wegewijs, PRB 86 (2012) [related work for N=2 at $T\rightarrow\infty$]

contribute with an equal weight

NCA ($T \rightarrow \infty$, dashed), NCA ($T = T_{K}$, dotted) & Exact $T \rightarrow \infty$ limit (solid)

Transition from 2-peak to 4-peak structure occurs at $T \sim U$

Low temperature properties

1/(N-1) expansion & NRG

Two different *large* N approaches

1. Conventional Theory (NCA, ...):

Atomic limit + perturbation expansion in *hybridization* V

works mainly for $T\gtrsim T_K$.

2. Our approach: 1/(N-1) expansion,

HF solution + perturbation expansion in Coulomb repulsion U works for low-energy Fermi-liquid region at $T \lesssim T_K$

Our approach uses another kind of standard large N prescription for two-body interactions, such as the one used for the ϕ^4 model

Conventional large *N* theory:

Atomic limit + *perturbation expansion in Hybridization V*

Example: resolvent self-energy for an empty impurity state,

$$\Sigma_{e} = \sum_{k=1}^{\infty} A_{2k} v^{2k} = \sum_{k=1}^{\infty} \left(\sum_{p=0}^{k-1} A_{2k}^{(k-p)} \frac{1}{N^{p}} \right) \left\{ Nv^{2} \right\}^{k} \text{ scaling: } Nv^{2} = \text{const for } N \to \infty$$

$$A_{2k} = \sum_{m=1}^{k} A_{2k}^{(m)} N^{m} = A_{2k}^{(k)} N^{k} + A_{2k}^{(k-1)} N^{k-1} + \cdots,$$

$$Polynomial \text{ of } N \text{ of order } k \text{ Leading order in } N \text{ next leading order in } N$$

Leading order approximation: keeps $A_{2k}^{(k)}$ only (for all k) Next leading order approximation: keeps $A_{2k}^{(k)}$ and $A_{2k}^{(k-1)}$ for all k

Diagrams for the resolvent can be classified according to the number of loops, each of which gives a factor of N

Basic idea of 1/(N -1) expansion

Zero order in 1/(N-1) expansion: Hartree-Fock approximation

$$E_d = \epsilon_d + (N-1) U \langle n_{dm'} \rangle ,$$

(N-1)U is a natural **scaling** parameter for the Coulomb interaction of the SU(N) impurity.

Fermion loop gives a factor of N -1, the number of interacting orbitals, excluding one prohibited by $m' \neq m$. $g \equiv \frac{(N-1)U}{\pi\Delta}$

Order 1/(N-1) corrections:

Leading order contributions in the 1/(N - 1) expansion describes HF-RPA

Each bubble gives a factor of order N-1

A.O., R. Sakano, & T. Fujii, PRB 84 (2011)

1/(N-1) expansion *away from half-filling* (2nd step)

Perturbative renormalization of the impurity level :

A.O., PRB 85 (2012)

Next leading order terms: *fluctuations beyond the HF+RPA*

Zero order : Hartree-Fock (HF),	counter term:	$\lambda\equiv\Sigma(0)$,
Leading order in 1/(N -1): HF-RPA,	$\rightarrow \mathbf{X} \rightarrow$	$E_d^* \equiv E_d + \Sigma(0) ,$

Vertex corrections up to order 1/(N -1)²:

A.O., PRB 85 (2012)

Local Fermi-liquid parameters

Low-energy properties are determined by $\Sigma(\omega)$ and $\Gamma_{mm';m'm}(\omega,\omega';\omega',\omega)$ for small ω , and can be characterized by the three renormalized parameters:

Width of Kondo resonance: $\widetilde{\Delta} = Z \Delta \sim T_K$,Wilson ratio: $R = 1 + \frac{\widetilde{U}}{\pi \widetilde{\Delta}}$,Renormalized impurity level: $\widetilde{\epsilon}_d = Z \left[E_d + \Sigma(0) \right]$,

Next leading order results for N = 4: away from half-filling

Next leading order results of Z & R for N = 4: away from half-filling

Order $1/(N-1)^2$ & NRG results of Green's function

in the electron-hole symmetric case

Order $1/(N-1)^2$ results of $G(\omega)$ for T=0 and g=9:

A.O, M. Awane, & R. Sakano.

 $g \equiv \frac{(N-1)U}{}$

Summary

Green's function & Local-Fermi-liquid parameters for SU(N) Anderson impurity:

- Exact Green's function at $eV \rightarrow \infty$ captures the imaginary part due to multiple particle-hole pair excitations (*relaxation process at high-energy scale*)
- Exact $T \rightarrow \infty$ result describes the higher-frequency sub-peak structure. Finite-U NCA describes T-dependence of the sub-peak structure at $T \gtrsim U$.
- 1/(N 1) expansion based on a perturbation theory in U correctly describes the low-energy Fermi-liquid properties, and agree with the NRG results for small couplings $g \equiv \frac{(N - 1)U}{\pi \Delta}$ and ω . *Possible extensions:* Non-equilibrium Green's function,

Application to bulk electrons (Hubbard model, DMFT, etc.).