2015/6/3 ISSP Workshop NPSMP2015

Kondo signature in heat transport via a local two-state system

Takeo Kato (ISSP, The Univ. of Tokyo)

Collaborator: Keiji Saito (Keio University) Phys. Rev. Lett. **111**, 214301 (2013)

Introduction

Electronic transport

l : mean free path (impurity) Diffusive transport $L \gg l$ L : sample size conductor $\overrightarrow{\Box} I \quad \text{Ohm's law: } I = -\sigma \frac{dV}{dx}$ electron Ballistic transport $L \ll l$ mesoscopic sample Landauer formula: $I = \frac{e}{2\pi} \int_{-\infty}^{\infty} d\omega \mathcal{T}(\omega) (f_L(\omega) - f_R(\omega))$ $\mathcal{T}(\omega)$: transmission probability

More about Landauer formula

Electron-heat correspondence

Diffusive transport

Counterpart in heat transport

Ohm's law:

$$I = -\sigma \frac{dV}{dx} \quad \blacksquare$$

Fourier's law:

$$I_h = -\kappa \frac{dT}{dx}$$

Ballistic transport

Landauer formula:

$$I = \frac{e}{2\pi} \int_{-\infty}^{\infty} d\omega \mathcal{T} (f_L - f_R)$$

 f_L, f_R : Fermi distribution

Extended Landauer formula for phonons:

$$I_h = \frac{1}{2\pi} \int_{-\infty}^{\infty} d\omega \hbar \omega \mathcal{T}(\mathbf{n_L} - \mathbf{n_R})$$

 n_L, n_R : Bose distribution

Quantization of heat transport

Electron conduction v.s. Heat conduction

	Electroninc transport	Heat transport
Diffusive transport	Ohm's law	Fourier's law
Ballistic transport	Landauer's formula	Phonon version of Landauer's formula
Controlling device	Diode	Heat diode (Ojanen –Jauho `08)
0-dim object	Quantum dot Kondo effect	???

Zero-dimensional object

Interaction

Segal and Nitzan, PRL 2005

Kondo effect (electronic transport)

Many-body effect well known in condensed matter physics.

$$\begin{aligned} & \mathsf{Detail of mapping} \\ H_{K} = \sum_{k,\sigma} (\varepsilon_{k} - \mu) c_{k\sigma}^{\dagger} c_{k\sigma} \\ & + J_{\perp} \sum_{k,k'} (c_{k\uparrow}^{\dagger} c_{k'\downarrow} S^{-} + c_{k\downarrow}^{\dagger} c_{k'\uparrow} S^{+}) \\ & + J_{\perp} \sum_{k,k'} (c_{k\uparrow}^{\dagger} c_{k'\downarrow} S^{-} + c_{k\downarrow}^{\dagger} c_{k'\uparrow} S^{+}) \\ & + \frac{J_{\parallel}}{2} \sum_{k,k'} (c_{k\uparrow}^{\dagger} c_{k'\uparrow} - c_{k\downarrow}^{\dagger} c_{k'\downarrow}) S^{z} \\ \hline & I(\omega) = \sum_{k} \lambda_{k}^{2} \delta(\omega - \omega_{k}) = 2 \omega \omega \\ & \text{dissipation} \\ & \text{(coupling to bath)} \\ \hline & \Delta = \rho_{0} \omega_{c} J_{\perp} \\ \hline & 0 \\ \hline & AF-Kondo \\ Corresponding Kondo Model \end{aligned}$$

Phase diagram

Leggett et al. RMP 1987

Kondo effect in heat transport

Formulation

Hamiltonian

KS, EPL(2008) Velizhanin, Yhoss, Wang, JCP (2010) Ojanen and Jauho, PRL (2008)

$$\begin{split} H &= \frac{\hbar\Delta}{2} \sigma_x + \sum_{\nu k} \hbar\omega_k b_{\nu k}^{\dagger} b_{\nu k} + \frac{\sigma_z}{2} \sum_{\nu, k} \hbar\lambda_{\nu k} (b_{\nu k} + b_{\nu k}^{\dagger}) \\ I_{\nu}(\omega) &= \sum_k \lambda_{\nu k}^2 \delta(\omega - \omega_k) = 2 \alpha_{\nu} \omega \\ \text{Coupling strengths} \\ I_{\nu}(\omega) &= \sum_k \lambda_{\nu k}^2 \delta(\omega - \omega_k) = 2 \alpha_{\nu} \omega \\ \text{Exaxt formula (Keldysh method)} \\ \text{Exaxt formula (Keldysh method)} \\ \text{tunneling amplitude } \Delta \\ \kappa &= \frac{k_B \alpha_L \alpha_R}{2\alpha} \int_0^{\omega_c} d\omega S(\omega) \omega^2 \left[\frac{\beta \omega/2}{\sinh(\beta \omega/2)} \right]^2 \\ \text{thermal conductance} \\ \kappa &\equiv \lim_{\Delta T \to 0} \frac{I_h}{\Delta T} \\ \chi(t, t') &= i\hbar^{-1}\theta(t - t') \langle [\sigma_z(t), \sigma_z(t')] \rangle \,. \end{split}$$

Monte Carlo method(1)

 $\chi(t,t') = \frac{i}{\hbar} \theta(t-t') \langle [\sigma_z(t), \sigma_z(t')] \rangle$: quantity to be calculated

imaginary-time formalism

$$g(\tau) = \langle \sigma_z(t = -i\tau)\sigma_z(0) \rangle$$

$$g(i\omega_n) = \int_0^\beta d\tau g(u) e^{i\omega_n\tau} \quad \langle \sigma_i \sigma_0 \rangle \simeq \langle \sigma_z(\tau)\sigma_z(0) \rangle$$

$$g(i\omega_n \to \omega + i\delta) \simeq \chi(\omega)$$

$$\int_{\text{path-integral expression}}^{\text{Monte Carlo method}} \beta_I H = \sum_{\sigma_z(\tau)} J_{ij}\sigma_i\sigma_j$$

$$\sigma_z(\tau)^{\langle i,j \rangle}$$

Monte Carlo method(2)

Leggett et al. RMP 1987 Völker, PRB 1998

Partition function

$$Z = \operatorname{Tr} e^{-\beta H} = Z_{+} + Z_{-}$$

$$= \sum_{n=0}^{\infty} \operatorname{Tr}_{\operatorname{boson}} \left\{ \langle +|e^{-\beta H_{z}} \int_{0}^{\beta} d\tau_{1} \cdots \int_{0}^{\tau_{2n-1}} d\tau_{2n} \left(\frac{\Delta}{2}\right)^{2n} \tilde{\sigma}_{x}(\tau_{1}) \cdots \tilde{\sigma}_{x}(\tau_{2n})|+\rangle \right\}$$

$$= Z_{0} \sum_{n=0}^{\infty} \left(\frac{\Delta \tau_{c}}{2}\right)^{2n} \int_{0}^{\beta} \frac{d\tau_{1}}{\tau_{c}} \int_{0}^{\tau_{1}-\tau_{c}} \frac{d\tau_{1}}{\tau_{c}} \cdots \int_{0}^{\tau_{2n-1}-\tau_{c}} \frac{d\tau_{2n}}{\tau_{c}}$$

$$\exp \left\{ 2\alpha \sum_{i=1}^{\infty} (-1)^{i+j} \ln \left| \frac{\beta}{\pi \tau_{c}} \sin(\pi(\tau_{j}-\tau_{i})/\beta) \right| \right\}$$
Effective lsing model
$$H_{spin-boson} = -\frac{J_{nn}}{2\beta} \sum_{i=1}^{N} \sigma_{i} \sigma_{i+1} - \frac{\alpha}{2\beta} \sum_{j < i} \frac{(\pi/N)^{2} \sigma_{i} \sigma_{j}}{\sin^{2} [\pi(j-i)/N]}$$

$$J_{nn} = -\alpha(1+\gamma) - \ln(\Delta \tau_{c}/2)$$

Weak-coupling approach (sequential tunneling)

Physical meaning of T³ law

One-dimensional harmonic oscillator chain

Dynamics can be described by stochastic transitions

Summary

- Two-state system coupled to the bath
 = Correspondance of the Kondo effect
- Low-temperature: $\kappa \propto T^3$ $(T \ll T_K)$
- High-temperature: $\kappa \propto T^{2\alpha-1} (T \gg T_K)$
- Scaling relation: $\kappa(T) \sim (k_B^2 T_K / \hbar) f(\alpha, T / T_K)$
- Future problem
 - non-ohmic coupling
 - non-equilibrium heat transport

AF-Kondo F-Kondo Corresponding Kondo Model

Thank you for your attention