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INTRODUCTION 

Ergodicity!

Thermalization in isolated classical systems

Isolated classical system: N degrees of freedom, energy E, volume V

�! microcanonical ensemble

Phase space � : (q
1

, . . . , q
N

, p
1

, . . . , p
N

)
Dynamics: Hamiltonian H

q̇
i

=
@H
@p

i

ṗ
i

= �@H
@q

i

Fundamental postulate of statistical physics
The probability density in equilibrium is

⇢(q, p) =

(
const. (q, p) 2 �(N,E ,V )

0 otherwise

Time#average:!

Microcanonical#average:!

Boltzmann’s#ergodic#hypothesis#(1871):!
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Hamiltonian#system!

A = lim
T→∞

1
T

A(p(t),q(t))
0

T

∫

A = A
mc

A
mc
=

1
vol (Γ)

A(p,q)
Γ(E,N )∫



Ergodicity!in!QM!
The diagonal ensemble

Microcanonical setting: start with narrow energy distribution

hE i =
X
↵

|C↵|2E↵

�E =

sX
↵

|C↵|2 (E↵ � hE i)2 ⌧ hE i

Time average

hA(t)i =
X
↵

C ⇤
↵C�e�

i
~ (E↵�E�)tA↵�

+

Ā = lim
T!1

1
T

ˆ
T

0

dt hA(t)i =
X
↵

|C↵|2A↵↵

Diagonal ensemble

Ā = Tr ⇢DEA

⇢DE =
X
↵

|C↵|2| ↵ih ↵|

prepare!ini>al!state!(ground!state)!! change!Hamiltonian!

measure!!...!

Time evolution in isolated quantum systems

Quantum systems differ fundamentally from classical ones:
if thermalization occurs, it must have a fundamentally different
explanation as time evolution is linear!

| (t = 0)i =
X
↵

C↵| ↵i C↵ : overlaps

H| ↵i = E↵| ↵i

Time evolution
| (t)i =

X
↵

C↵e�
i
~E↵t | ↵i

Observables

hA(t)i = h (t)|A| (t)i =
X
↵

C ⇤
↵C�e�

i
~ (E↵�E�)tA↵�

A↵� = h ↵|A| �i
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Eme#average:!

Is!described!by!diagonal!ensemble:!!

The diagonal ensemble
Microcanonical setting: start with narrow energy distribution
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(cau>on: !!!!!!!!!!!!!!!!!!and!!!!!!!!!!!!!!!!!!imits!not!interchangable...) !!!L→∞ T→∞

Eigenstate!thermaliza>on!hypothesis!

Eigenstate thermalization hypothesis
Stationary state: for large t

A(t) =
X
↵

C⇤
↵C�e� i

~ (E↵�E� )tA↵� ! Ā =
X
↵

|C↵|2A↵↵

Microcanonical average

hAi
mc

=
1

N(hEi ,�E)

X
↵:E↵2I

A↵↵ I = [hEi ��E , hEi+�E ]

Deutsch (1991): “quantum ergodicity”X
↵

|C↵|2A↵↵ =
1

N(hE i ,�E )

X
↵:E↵2I

A↵↵

Eigenstate thermalization hypothesis, ETH (Srednicki, 1994)

A↵↵ = hAimc (E↵) 8↵

Supposed to hold for large systems (thermodynamic limit – TDL)

Deutsch#(1991)#:#“quantum#ergodicity”!

Eigenstate thermalization hypothesis
Stationary state: for large t

A(t) =
X
↵

C⇤
↵C�e� i

~ (E↵�E� )tA↵� ! Ā =
X
↵

|C↵|2A↵↵

Microcanonical average
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mc

=
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X
↵:E↵2I

A↵↵ I = [hEi ��E , hEi+�E ]

Deutsch (1991): “quantum ergodicity”X
↵

|C↵|2A↵↵ =
1

N(hE i ,�E )

X
↵:E↵2I

A↵↵

Eigenstate thermalization hypothesis, ETH (Srednicki, 1994)

A↵↵ = hAimc (E↵) 8↵

Supposed to hold for large systems (thermodynamic limit – TDL)

Srednicki#(1994),#Huse:#Eigenstate#thermalizaEon#hypothesis!

For#what#observables#???! local,!fewJbody!

Do#they#hold#????! for!many!systems!yes!
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Excep>ons!

•  Integrable#systems#

•  Spontaneous#symmetry#breaking#

•  LocalizaEon,#glassy#systems#

ManyJbody!localiza>on...!

Closed quantum systems in reality

Can be realized with cold atoms... ...which sometimes do not thermalize

T. Kinoshita, T. Wenger and D.S. Weiss:
A quantum Newton’s cradle, Nature 440 (2006) 900-903.

T. Kinoshita, T. Wenger and D.S. Weiss,!
Nature 440 (2006) 900-903.!

A#quantum#Newton’s#cradle#
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Integrability!and!the!Generaized!Gibbs!Ensemble!

•  Classical#picture:#ergodicity#on#tori#

Integrable systems violate ergodicity

Fermi-Pasta-Ulam (1953; Los Alamos technical report 1955)

mẍ
j

= k(x
j+1

+ x
j�1

� 2x
j

) [1 + ↵(x
j+1

� x
j�1

)] j = 1, . . . ,N

Exciting a vibration mode: thermalization expected.
Found instead: complicated quasi-periodic behaviour!
Reason: system is integrable! (discretized version of KdV)
Integrability: action-angle variables exist

[Q
i

,Q
j

] = 0 H 2 {Q
i

}
i=1,...,N

The quantities are conserved: motion along tori in
phase space �!
Lissajous orbits with frequencies !

1

, . . . ,!
N

! may be ergodic on the tori
! ? microcanonical ensemble on the tori ?

Generalized Eigenstate Thermalization Hypothesis

Ergodicity on tori

) at quantum level:

Generalized Eigenstate Thermalization Hypothesis (GETH)
ETH holds on Q-shells i.e. subspaces determined by fixing the Q

i

Gibbs and generalized Gibbs ensembles
Nonintegrable system: steady state is thermal
DE is equivalent to a Gibbs ensemble for relevant observables

Tr ⇢
DE

A = Tr ⇢
GE

A

⇢
GE

=
1

Z
e��H Z = Tr e��H

Determining the temperature: Tr ⇢
GE

H = h (0)|H| (0)i ! �

Generalized Gibbs Ensemble (GGE)
natural assumption: in integrable systems quantum ergodicity holds
on common eigensubspaces of Q

i

⇢
GGE

=
1

Z
e�

P
i �iQi Z = Tr e�

P
i �iQi

Generalized temperatures/chemical potentials

Tr ⇢
GGE

Qi = h (0)|Qi | (0)i i = 1, . . . ,N ! {�i}i=1,...,N

GE/GGE: follow from conditional maximum entropy principle.

assump>on:!ergodicity!holds!on!common!subspace!of!constants!of!mo>on!

•  Quantum#case:#GGE#

small!subsystem!is!described!by!

Generalized#Gibbs#Ensemble#(GGE)!

GGE#has#been#tested#for#many#simple#systems...#What#about#a#truely#interacEng#system#??##

Tr( ρGGEQi ) = ψ(0) Qi ψ(0) βi

(M.!Rigol,!V.!Dunjko,!and!M.!Olshanii,!2008)!
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Failure of the GGE 

B. Pozsgay, M. Mestyán, M.�A. Werner, M. Kormos, G.Z., and G.Takács, Phys. Rev. Lett. 113, 117203 (2014)!
!

[B. Wouters et al., Phys. Rev. Lett. 113, 117202 (2014) !
G. Goldstein and N. Andrei, PRA 90, 043625 (2014)]!

Phase!diagram!of!XXZ!chain!

Simulation of the time evolution of the XXZ Spin Chain: evolution of short 
range correlations, and breakdown of the Generalized Gibbs Ensemble

B. Pozsgay, M. Mestyán, M. A. Werner, M. Kormos, G. Zaránd, and G. Takács
Budapest University of Technology and Economics

MOTIVATIONS

Relaxation after quantum quenches in 
integrable systems

Test the predictions of the Generalized 
Gibbs Ensemble hypothesis

THE S = 1/2 
XXZ SPIN CHAIN
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The low energy phase diagram of the 
S = 1/2 XXZ model.

Compare the results to recent 
predictions based on TBA

THE GGE HYPOTHESIS

Integrable model

Infinite number of conserved local charges

The stationary state density matrix:





i

iiQ

GGE e


̂
Relaxation of a non-equilibrium state

Determining the inverse temperatures, the
stationary correlations can be calculated [1],[2]

THE oTBA METHOD
Integrable model

Bethe ansatz solution

Quench-action formalism

Description of the stationary state
without the GGE Hypothesis [3],[4]

Problem: The two predictions are different.



THE TEBD ALGORITHM
Matrix product states:
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The sufficient matrix size depends on
the entanglement of the state.

Time evolution of an MPS [5],[6]
Suzuki-Trotter discretization:
consecutive two-site updates 

U
Key step: singular value decomposition (SVD)
Numerical error: truncation of the matrices

Infinite system sizes

Rotational symmetry around the z-axis

Selection rule:

 QqQ 

RELAXATION OF THE 
NEÉL STATE

Short range correlations in the relaxation of the
antiferromagnetic Neél state. The correlations
converge rapidly to their stationary value, that
deviates strongly from the thermal ensemble
prediction. The GGE and oTBA predictions are
both close to the stationary value, the difference
cannot be resolved by the iTEBD simulation.

RELAXATION OF THE
MAJUMDAR-GHOSH STATE

The Neél-state:

4

The Majumdar-Ghosh dimer state:

The short range correlations converge rapidly to
their stationary value. In the left figure the third
neighbour correlation is shown. Interestingly the
correlation differs for the two sublattices, and it is
still an open question whether it remains different
for very long times. In the down panel, the
sublattice averaged correlator is shown. The
stationary value is well described by the oTBA
prediction. The GGE prediction, however, fails
significantly. In the right the second neighbour
correlation is shown, where the two sublattices are
equivalent. The oTBA prediction is very accurate
again, while the GGE fails to describe the
stationary state.
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First and second nearest neighbour correlators as
a function of . The stationary values extracted
from the iTEBD simulation are consistent with the
oTBA prediction. The GGE (tGGE) prediction,
however, fails to describe the stationary value.
The difference is more pronounced in the second
nearest neighbours.

CONCLUSIONS
The entanglement 
entropy between two 
half-infinite parts of the 
chain grows rapidly. 
Therefore the simulation 
loses its reliability. 

• We simulated the relaxation of the XXZ 
chain prepared in the Neél and dimer 
states.

• The stationary short range correlations 
deviate from the GGE prediction.

• The stationary short range correlations 
are well predicted by the oTBA method.

OPEN QUESTIONS
• Is translational invariance restored in 
very long times for the dimer state?

• Why GGE does not provide a general 
description, and what conditions should 
met for it to work?
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Tes>ng!GGE!

•  Ini>al!state:!Néel!state!/!dimer!state!

•  Time!evolu>on!(TEBD)!

•  Test!local!observables!against!exact!results!(GGE!and!
overlapJthermodynamic!Bethe!Ansatz)!

Selection of initial states: the quantum quench paradigm

Quantum quench

H(g
0

) �!
t=0

H(g)

ground state �! time evolution �!
large t

steady state

Role of locality in our considerations
Start from ground state of local Hamiltonian
Evolved by a local Hamiltonian
Relevant observables: local operators
Expect local charges to play a role

Example starting states for XXZ quenches:
Neel: | "#"# . . . "#i – ground state at � = 1
Dimer:✓

1p
2

(| "#i � | #"i)
◆
⌦
✓

1p
2

(| "#i � | #"i)
◆
⌦· · ·⌦

✓
1p
2

(| "#i � | #"i)
◆

ground state of Majumdar-Ghosh Hamiltonian
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TimeJevolving!block!decima>on!(TEBD)!
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Time evolvong block decimation (TEBD) 

Simulation of the time evolution of the XXZ Spin Chain: evolution of short 
range correlations, and breakdown of the Generalized Gibbs Ensemble
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MOTIVATIONS

Relaxation after quantum quenches in 
integrable systems

Test the predictions of the Generalized 
Gibbs Ensemble hypothesis
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The stationary state density matrix:
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Determining the inverse temperatures, the
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Quench-action formalism
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without the GGE Hypothesis [3],[4]
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Time evolution of an MPS [5],[6]
Suzuki-Trotter discretization:
consecutive two-site updates 
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Key step: singular value decomposition (SVD)
Numerical error: truncation of the matrices

Infinite system sizes

Rotational symmetry around the z-axis
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RELAXATION OF THE 
NEÉL STATE

Short range correlations in the relaxation of the
antiferromagnetic Neél state. The correlations
converge rapidly to their stationary value, that
deviates strongly from the thermal ensemble
prediction. The GGE and oTBA predictions are
both close to the stationary value, the difference
cannot be resolved by the iTEBD simulation.
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MAJUMDAR-GHOSH STATE
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The Majumdar-Ghosh dimer state:

The short range correlations converge rapidly to
their stationary value. In the left figure the third
neighbour correlation is shown. Interestingly the
correlation differs for the two sublattices, and it is
still an open question whether it remains different
for very long times. In the down panel, the
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CONCLUSIONS
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Therefore the simulation 
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• The stationary short range correlations 
deviate from the GGE prediction.
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Excitations and string hypothesis
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String hypothesis
Thermodynamics can be described by string degrees of freedom
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Ā = lim

T!1

1

T

ˆ T

0
dt hA(t)i =

X
↵

|C↵|2A↵↵ C↵ = h (0)|↵i

Replace sum:

X
↵

�!
ˆ 1Y

n=1

D⇢n(�)eLs[{⇢n(�)}]

eLs[{⇢n(�)}]: number of Bethe states scaling to {⇢
n

(�)} in the TDL.
Supposing that C↵ and A↵↵ only depend on {⇢

n

(�)} in the TDL:
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Simulation of the time evolution of the XXZ Spin Chain: evolution of short 
range correlations, and breakdown of the Generalized Gibbs Ensemble
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MOTIVATIONS

Relaxation after quantum quenches in 
integrable systems

Test the predictions of the Generalized 
Gibbs Ensemble hypothesis

THE S = 1/2 
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The low energy phase diagram of the 
S = 1/2 XXZ model.

Compare the results to recent 
predictions based on TBA

THE GGE HYPOTHESIS

Integrable model

Infinite number of conserved local charges

The stationary state density matrix:


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Relaxation of a non-equilibrium state

Determining the inverse temperatures, the
stationary correlations can be calculated [1],[2]

THE oTBA METHOD
Integrable model

Bethe ansatz solution

Quench-action formalism

Description of the stationary state
without the GGE Hypothesis [3],[4]

Problem: The two predictions are different.
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The sufficient matrix size depends on
the entanglement of the state.

Time evolution of an MPS [5],[6]
Suzuki-Trotter discretization:
consecutive two-site updates 

U
Key step: singular value decomposition (SVD)
Numerical error: truncation of the matrices

Infinite system sizes

Rotational symmetry around the z-axis

Selection rule:

 QqQ 

RELAXATION OF THE 
NEÉL STATE

Short range correlations in the relaxation of the
antiferromagnetic Neél state. The correlations
converge rapidly to their stationary value, that
deviates strongly from the thermal ensemble
prediction. The GGE and oTBA predictions are
both close to the stationary value, the difference
cannot be resolved by the iTEBD simulation.

RELAXATION OF THE
MAJUMDAR-GHOSH STATE

The Neél-state:

4

The Majumdar-Ghosh dimer state:

The short range correlations converge rapidly to
their stationary value. In the left figure the third
neighbour correlation is shown. Interestingly the
correlation differs for the two sublattices, and it is
still an open question whether it remains different
for very long times. In the down panel, the
sublattice averaged correlator is shown. The
stationary value is well described by the oTBA
prediction. The GGE prediction, however, fails
significantly. In the right the second neighbour
correlation is shown, where the two sublattices are
equivalent. The oTBA prediction is very accurate
again, while the GGE fails to describe the
stationary state.
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First and second nearest neighbour correlators as
a function of . The stationary values extracted
from the iTEBD simulation are consistent with the
oTBA prediction. The GGE (tGGE) prediction,
however, fails to describe the stationary value.
The difference is more pronounced in the second
nearest neighbours.

CONCLUSIONS
The entanglement 
entropy between two 
half-infinite parts of the 
chain grows rapidly. 
Therefore the simulation 
loses its reliability. 

• We simulated the relaxation of the XXZ 
chain prepared in the Neél and dimer 
states.

• The stationary short range correlations 
deviate from the GGE prediction.

• The stationary short range correlations 
are well predicted by the oTBA method.

OPEN QUESTIONS
• Is translational invariance restored in 
very long times for the dimer state?

• Why GGE does not provide a general 
description, and what conditions should 
met for it to work?
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deviates strongly from the thermal ensemble
prediction. The GGE and oTBA predictions are
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Conclusions I 

•  First!serious!!test!for!a!truly!interac>ng!system...!

•  GGE!fails!for!the!XXZ!chain,!some!states!are!more!sensi>ve!

!!no!ergodicity!on!torus!!

reasons:!!????!what!next!??!

follow!up!papers:!GGE!should!fail!for!most!systems!with!strings!...!
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Quantum quenches in the sine–Gordon model: a semiclassical approach
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We compute the time evolution of correlation functions after quantum quenches in the sine–
Gordon model within the semiclassical approximation which is expected to yield accurate results for
small quenches. We demonstrate this by reproducing results of a recent form factor calculation for
the relaxation of expectation values. Extending these results, we find that the expectation values of
most vertex operators do not decay to zero. We show that the dynamic two-point functions have
di↵usive behavior for large timelike separation.

PACS numbers: 67.85.-d, 02.30.Ik, 03.75.-b

I. INTRODUCTION

Questions of the relaxation and thermalization of iso-
lated quantum systems have attracted a lot of attention
over the last decade [1, 2]. Under which conditions a
given system relaxes or thermalize? If the asymptotic sta-
tionary state is not thermal, can it be described within
the framework of statistical physics? How quickly is the
asymptotic state reached and what are the characteris-
tics of the time evolution? The increased interest in these
fundamental questions is to a major part due to the spec-
tacular advances in cold atom experiments which are able
to study the coherent evolution of isolated quantum sys-
tems, moreover, many properties and parameters of the
system are tunable [3–9].

The seminal experiment by Kinoshita et al. [3] drew
the attention to the distinguished role of integrable sys-
tems in this context. Due to the extensive number of con-
served quantities, integrable systems do not thermalize.
In order to describe their stationary state, a Generalized
Gibbs Ensemble (GGE) was proposed [10] and found in
subsequent works to be a valid description in many sys-
tems [? ]. Lately, its applicability for continuum systems
was questioned [11, 12] and it was even shown to fail to
capture the steady state after quenches in the XXZ spin
chain [13, 14].

Much less is known about the details of the relaxation
process and the time scales of the relaxation. Numeri-
cal approaches are usually constrained either by the size
of the system or the times until they are able to follow
reliably the evolution of the system, and the long time
behavior in the thermodynamic limit is hard to study
(references? ”see however []”?). Progress in the an-
alytic description has been made in conformal field the-
ories [15, 16] and in systems that can be mapped to free
bosons or free fermions [17–52]. Some notable exceptions
are [53].

It would be desirable to obtain analytic results in gen-
uinely interacting systems as well, but this is notoriously
hard even in integrable systems, where the spectrum and
the matrix elements of local operators, the so-called form

factors, are usually known. Based on these ingredients, a
linked cluster expansion can be written down where the
small expansion parameter is essentially the density of
excitations after the quench [54, 55]. Summing up the se-
ries is a daunting task, nevertheless, some progress can
be made at least regarding the short time behavior after
a quantum quench.
Another possible approach is based on the so-called

quench action technique for Bethe Ansatz integrable sys-
tems [56] which works directly in the thermodynamic
limit. In this method the steady state is captured by a
representative eigenstate determined based on the exact
overlaps between the initial state and the eigenstates of
the Hamiltonian. The evolution towards the steady state
is obtained as a sum over contributions of excitations over
the representative state. Implementing this approach us-
ing the exact form factors yields a series which might be
partially summed up to obtain the late time evolution.
These two methods were applied recently [55] to the

sine–Gordon field theory which is also the subject of our
paper. The imaginary time action of the sine–Gordon
model is

S =
c

16⇡

Z
dxd⌧


(@x�)

2 +
1

c

2
(@t�)

2 � � cos(��)

�
,

(1)
where �(x, t) is bosonic field. The cosine perturbation is
relevant for � < 1 leading to a gapped phase with massive
particle-like excitations. The model contains topological
excitations (kinks), the so-called soliton and antisoliton
with charge m = ±1 interpolating between neighboring
minima of the cos(��) potential and are always present
in the spectrum. In the attractive regime 0 < � < 1/

p
2,

they can form bound states, the so-called breathers. In
repulsive the regime 1/

p
2 < � < 1, bound states are not

formed and the spectrum can be described in terms of
the soliton and antisoliton. At � = 1/

p
2 the model can

be mapped to free Dirac fermions.
The sine–Gordon model is a paradigmatic model pro-

viding the low energy e↵ective description of a wide range
of one-dimensional systems via bosonization [57? ], in-
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PACS numbers: 67.85.-d, 02.30.Ik, 03.75.-b

I. INTRODUCTION

Questions of the relaxation and thermalization of iso-
lated quantum systems have attracted a lot of attention
over the last decade [1, 2]. Under which conditions a
given system relaxes or thermalize? If the asymptotic sta-
tionary state is not thermal, can it be described within
the framework of statistical physics? How quickly is the
asymptotic state reached and what are the characteris-
tics of the time evolution? The increased interest in these
fundamental questions is to a major part due to the spec-
tacular advances in cold atom experiments which are able
to study the coherent evolution of isolated quantum sys-
tems, moreover, many properties and parameters of the
system are tunable [3–9].

The seminal experiment by Kinoshita et al. [3] drew
the attention to the distinguished role of integrable sys-
tems in this context. Due to the extensive number of con-
served quantities, integrable systems do not thermalize.
In order to describe their stationary state, a Generalized
Gibbs Ensemble (GGE) was proposed [10] and found in
subsequent works to be a valid description in many sys-
tems [? ]. Lately, its applicability for continuum systems
was questioned [11, 12] and it was even shown to fail to
capture the steady state after quenches in the XXZ spin
chain [13, 14].

Much less is known about the details of the relaxation
process and the time scales of the relaxation. Numeri-
cal approaches are usually constrained either by the size
of the system or the times until they are able to follow
reliably the evolution of the system, and the long time
behavior in the thermodynamic limit is hard to study
(references? ”see however []”?). Progress in the an-
alytic description has been made in conformal field the-
ories [15, 16] and in systems that can be mapped to free
bosons or free fermions [17–52]. Some notable exceptions
are [53].

It would be desirable to obtain analytic results in gen-
uinely interacting systems as well, but this is notoriously
hard even in integrable systems, where the spectrum and
the matrix elements of local operators, the so-called form

factors, are usually known. Based on these ingredients, a
linked cluster expansion can be written down where the
small expansion parameter is essentially the density of
excitations after the quench [54, 55]. Summing up the se-
ries is a daunting task, nevertheless, some progress can
be made at least regarding the short time behavior after
a quantum quench.
Another possible approach is based on the so-called

quench action technique for Bethe Ansatz integrable sys-
tems [56] which works directly in the thermodynamic
limit. In this method the steady state is captured by a
representative eigenstate determined based on the exact
overlaps between the initial state and the eigenstates of
the Hamiltonian. The evolution towards the steady state
is obtained as a sum over contributions of excitations over
the representative state. Implementing this approach us-
ing the exact form factors yields a series which might be
partially summed up to obtain the late time evolution.
These two methods were applied recently [55] to the

sine–Gordon field theory which is also the subject of our
paper. The imaginary time action of the sine–Gordon
model is

S =
c

16⇡

Z
dxd⌧


(@x�)

2 +
1

c

2
(@t�)

2 � � cos(��)

�
,

(1)
where �(x, t) is bosonic field. The cosine perturbation is
relevant for � < 1 leading to a gapped phase with massive
particle-like excitations. The model contains topological
excitations (kinks), the so-called soliton and antisoliton
with charge m = ±1 interpolating between neighboring
minima of the cos(��) potential and are always present
in the spectrum. In the attractive regime 0 < � < 1/

p
2,

they can form bound states, the so-called breathers. In
repulsive the regime 1/

p
2 < � < 1, bound states are not

formed and the spectrum can be described in terms of
the soliton and antisoliton. At � = 1/

p
2 the model can

be mapped to free Dirac fermions.
The sine–Gordon model is a paradigmatic model pro-

viding the low energy e↵ective description of a wide range
of one-dimensional systems via bosonization [57? ], in-
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cluding spin chains, spin ladders, cold atomic gases in an
external potential etc. (more on this?)

One of the most studied non-equilibrium situations is
when the system is prepared in an initial state and then
let evolve. This can be achieved by a quantum quench
[15], i.e. preparing the system in the ground state and
then suddenly changing a parameter of the Hamiltonian.
In the sine–Gordon model, the time evolution of the ver-
tex operator

⌦
e

i��
↵
was studied after quenches in the at-

tractive regime in [58]. Analytic results have been derived
for the correlations of the same operator for quenches be-
tween the exactly solvable points � = 0 and � = 1/

p
2 in

[26].
The authors of Ref. [55] studied the time evolution of

the expectation value of the vertex operator
⌦
e

i��/2
↵
in

the repulsive regime for small quenches, i.e. in the leading
order in the density of kinks. They took the initial state
to be a squeezed coherent state of the form

| 0i = exp

⇢Z 1

0

d✓

2⇡
Kab(✓)Ẑ

†
a(�✓)Ẑ†

b (✓)

�
|0i . (2)

Here Ẑa(✓) creates a kink of type a = ± with relativis-
tic rapidity ✓. These states are coherent superpositions
of kink pairs and are called integrable initial states due
to their resemblance to the integrable boundary states.
The small quench condition means that the distribution
functions Kab(✓) are small, in particular, the densities of
all kinds of pairs are small:

⇢ab ⇡
Z 1

0

d✓

2⇡
mc cosh(✓)|Kab(✓)|2 ⌧ 1 . (3)

Using the representative state approach, in the work [55]
the expectation value

⌦
e

i��(x,t)/2
↵
was found to decay

exponentially to zero,

D
e

i��(x,t)/2
E
⇠ e

�t/⌧ (4)

with the decay rate

⌧

�1 = 2m

Z 1

0

d✓

⇡

X

ab

|Kab(✓)|2 sinh ✓ +O(K4
ab) . (5)

The short time behavior up to O(t2) obtained in the
linked cluster expansion was shown to be consistent with
the short time expansion of Eq. (4).

The main physical assumption underlying the imple-
mentation of both approaches is that the density of ex-
citations created by the quench is low. Physically this
is a consequence of the low energy density pumped into
the system in the quench, so it is natural to assume that
the mean velocity of the kinks is also low. But these are
exactly the conditions for the applicability of a semiclas-
sical treatment! This approach was originally developed
for the computation of dynamical correlation functions
at finite temperature, first in the quantum Ising univer-
sality class [59], then for the O(3) non-linear sigma model

[60, 61], the q-state Potts model [62, 63], and the sine–
Gordon model [63, 64]. The method was later applied to
global [21, 24, 32] and local [31] quenches in the trans-
verse field Ising chain and in the XY chain [35], to the
Ising field theory and for the non-linear sigma model [65].
The idea behind this method is that the quasiparticles,

created by either thermal fluctuations or by a quantum
quench, form a dilute gas and can be treated semiclas-
sicaly. Their quantum nature becomes important when
they collide with each other, which is taken into account
by using the low energy limit of the two-particle scatter-
ing matrix.
In the original paper [59] the method was compared

with numerically exact results based on free fermion tech-
niques in the transverse field Ising chain for finite temper-
ature correlation functions and excellent agreement was
found. Calculations based on a form factor expansion in
the Ising field theory and in the non-linear sigma model
were also compared with the predictions of the semiclas-
sical theory, and quantitative agreement was shown for
very low temperatures and good qualitative agreement
for higher temperatures [66]. For quenches in the trans-
verse Ising chain [30–32] and the XY chain [35] the semi-
classical method was shown to be accurate for quenches
deep in the ordered phase, and qualitatively correct for
quenches to the disordered phase. In the thermodynamic
limit it provides exact results for the entanglement en-
tropy as well as for correlation functions in the ordered
phase even for large quenches once a modified quasipar-
ticle distribution is used instead of the naive one which
e↵ectively takes into account the finite size of the domain
walls [35, 65].
Here we apply the method to quenches in the sine–

Gordon field theory. Based on the agreement between the
form factor expansion and the semiclassical approach ob-
served for thermal correlations at low temperatures and
for quenches within the ordered phase of the Ising model,
we expect that in the leading order of the quasiparticle
density the semiclassical calculation should agree with
the form factor expansions of Ref. [55]. Indeed, we find
that our semiclassical calculation reproduces exactly the
result in Eq. (4) for the exponential decay of

⌦
e

i��/2
↵
.

However, we can go significantly beyond this result.
While extending the form factor based calculations of
Ref. [55] to other observables (e.g. two-point functions)
seems to be a very demanding task, in the semiclassical
method it poses only slight, surmountable complications.
Assuming that only soliton-antisolition pairs are present
in the initial state (as is the case for fixed initial condi-
tions), we obtain new results in two directions. On the
one hand, we calculate the relaxation of general vertex
operators

G↵(t) =
D
e

i↵�(x,t)
E

(6)

with the somewhat surprising result that they do not
decay to zero but approach finite values. We discuss the
possible reason for this in the conclusions. On the other
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hand, we compute the time evolution of dynamical two-
point functions of general vertex operators,

C↵(x
0 � x; t, t0) =

D
e

i↵�(x,t)
e

�i↵�(x0,t0)
E
. (7)

We show that the two-time correlations show di↵usive
behavior for generic values of ↵. This is expected to some
extent given that di↵usive behavior was also seen in the
semiclassical treatment of the thermal case [62–64].

The paper is organized as follows. In Section II we de-
scribe the semiclassical approach in detail. Expectation
values of vertex operators are computed in Section III.
We calculate the time evolution of general dynamic cor-
relation functions in Section IV, and we analyze the equal
time correlations, the autocorrelation functions and the
correlations in the asymptotic state separately. We give
our conclusions in Section V.

II. THE SEMICLASSICAL METHOD

For small quenches the energy density injected in the
system is small, implying that the quasiparticles are gen-
erated with a low density and they are close to the en-
ergy gap, moving much slower than the “speed of light”
c. The mean interparticle spacing is much larger than
their de Broglie wavelength, making it possible to treat
the quantum state within the semiclassical approxima-
tion. In the semiclassical regime the quasiparticles move
along classical trajectories and quantum mechanics be-
comes important whenever two particles get closer to
each other than their quantum mechanical size given by
the de Broglie wavelength, which is unavoidable in one
dimension. The collisions therefore need to be treated
quantum mechanically. However, because of the low den-
sity, only two-particle collisions are relevant and due to
the low momenta of the quasiparticles, we can approxi-
mate the scattering matrix by its low momentum limit.
In the repulsive regime of the sine–Gordon model,

S

m1,m2

m0
1,m

0
2
= (�1) �m1,m0

2
�m2,m0

1
, (8)

i.e. kinks scatter as “hard balls”. This implies that the
spatial sequence of the topological charges of the kinks
(solitons and antisolitons) is the same for all times [? ],
which will be crucial in the following.

The somewhat heuristic picture drawn above can be
justified by noting that it corresponds to the semiclassi-
cal limit of the double time Keldysh path integral along
the forward and backward paths generated by e

�iHt and
e

iHt
. The S-matrix factors drop out since |Sm1,m2

m0
1,m

0
2
|2 = 1.

The quantum expectation values are calculated as av-
erages over the kink configurations, that is over the initial
positions, velocities and charges of the kinks. Note that
the continued trajectories or “rays” remain straight lines
in 1D due to momentum and energy conservation (see
Fig. 1). Although these rays are not the physical trajec-
tories of kinks which instead move on complicated zig-zag

trajectories, it is very useful to think of the configurations
in terms of them.
We do not need to restrict ourselves to initial states of

the form (2) but we will assume that with respect to the
post-quench Hamiltonian the initial state is populated
by pairs of kinks with opposite momenta. In the small
quench scenario this is a very natural assumption: a lo-
cal perturbation, in the lowest order, gives rise to a pair
of kinks flying away from each other with the same veloc-
ity. Moreover, if the field is originally constant (Dirich-
let boundary condition) then since the field is unaltered
away from the perturbation, the total charge of each pair
must be zero, i.e. it must be a soliton-antisoliton pair.
However, this pattern of the quench creating pairs of
quasiparticles have been observed for several integrable
systems and initial states, even for large quenches. Some
examples are given by mass quenches in free bosonic sys-
tems, quenches of the transverse field in the quantum
Ising chain [20], in the delta Bose gas quenching from
a BEC state [12], in the anisotropic Heisenberg (XXZ)
spin chain for a Néel or dimerized initial state [67–69].
The variety of quenches featuring the pair structure sug-
gests that this might be a more general phenomenon.
Thus each semiclassical configuration is a collection of

independently distributed pairs of straight lines placed
along the t = 0 axis with uniform density, and a ran-
dom sequence of charges. In Fig. 1 we show such a con-
figuation for the case where only soliton-antisoliton pairs
are present. The kink pairs have a velocity distribution
fab(v) (v > 0), i.e. each pair of kinks with charges a and
b traveling with velocities v and �v is created with a
probability density fab(v). For the specific initial state
(2) this distribution is related to K(✓) as

fab(v) ⇡ m

2⇡⇢
|Kab(v/c)|2 , (9)

where ⇢ =
P

a,b ⇢ab is the total density of pairs and we
used that the velocities are nonrelativistic. With this def-
inition the distribution functions are normalized as

X

a,b=±

Z 1

0
dvfab(v) = 1 . (10)

In the case when there are only soliton-antisoliton and
antisoliton-soliton pairs created with equal probability,
K++ = K�� = 0 and K+� = K�+ = K, then shall use

f(v) = f+� + f�+ =
m

⇡⇢

|K(v/c)|2 . (11)

We are interested in the time evolution of the expec-
tation value (6) and the correlation function (7). In the
semiclassical limit, most of the time, the field takes one
of the values

� = n

2⇡

�

, n 2 Z . (12)

The domains of constant � are separated by kinks such
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FIG. 1: A kink configuration for initial states with
soliton-antisoliton pairs only. In this example

nL = 1, nR = 1, nI = 1, nA = 1.

that n increases (decreases) by one when crossing in the
positive spatial direction a soliton (antisoliton) trajec-
tory. Relation (8) can be viewed as a condition that the
field between two colliding kinks with vanishing momenta
remain unchanged during the collision. The correlation
functions depend on the di↵erence �(x1, t1) � �(x2, t2)
which is equal to the sum of charges of the kinks that
cross the straight line connecting the two points where
the operators are inserted. The charges of kinks belonging
to di↵erent pairs at t = 0 are uncorrelated, but as a result
of multiple collisions, these charges travel along compli-
cated zig-zag trajectories and they can cross the segment
connecting the two operators multiple times. However,
the spatial sequence of domains of constant � value at
any fixed time is unchanged under the time evolution (see
Fig. 1). Thus the domains can be labeled by an integer
and �(x, t) = �l if the point (x, t) lies in the l

th domain.
Consequently, �(x1, t1)��(x2, t2) = �l1 ��l2 if (x1, t1)
and (x2, t2) lie in the l

th
1 and l

th
2 domain, respectively,

and

�l1 � �l2 =
2⇡

�

sX

i=1

mi , (13)

where {mi} are the charges of the s = |l2 � l1| domain
walls (kinks) encountered when going from domain l1 to
l2. The value s is determined by the number and direc-
tions of the rays that intersect the segment between the
two operator insertion points, so the expectation value
of s is obtained by averaging over the initial positions
{xi} and velocities {vi} of the pairs. Finally, we have to
average over the charges {mi} of crossing trajectories, so
the correlation function is given by

C(�x; t, t0) = C↵(�x, t

0 � t)
D
e

i 2⇡
�

Ps
i=1 mi

E

{mi},{(xi,vi)}
,

(14)
where C↵ is the vacuum correlation function (!).

III. RELAXATION OF EXPECTATION VALUES

We start by calculating the time evolution of the ex-
pectation value

⌦
e

i↵�(x,t)
↵
for initial states having only

soliton-antisoliton pairs, so each pair has zero net topo-
logical charge. For this we need to determine in which
domain lies the point (x, t) and then the value of � in
that domain. Since �(x, t = 0) = 0, it su�ces to know
the number of domains s we shift to the left or to the
right while we travel along the straight vertical line con-
necting the points (x, 0) and (x, t). In other words, we
need to specify formally the computation outlined in the
previous section to the case when one of the operators
is inserted at t = 0. The number s is given by the dif-
ference of the numbers of kink trajectories intersecting
the segment [(x, 0), (x, t)] from the right and from the
left, s = n+ � n�. This can be calculated based on the
straight rays, disregarding the charges of the kinks.

Clearly, at most one ray from each pair can intersect
the segment. A ray of velocity v > 0 intersecting the
segment from the left must be the right member of a pair
originating from the spatial interval [(x � vt, 0), (x, 0)].
Because the pairs are created uniformly at t = 0, the
probability that the right going ray of a given pair with
velocity v intersects the segment from the left is vt/L,

where L is the size of the system. The probability that a
given pair leads to such an intersection is

p =

Z 1

0
dv

vt

L

f(v) , (15)

where f(v) = f+�(v) + f�+(v). Due to the parity sym-
metry and translational invariance, the probability that
the left going ray of a given pair intersects from the right
is also p. Since the pairs are independent from each other,
the left and right intersections are independent Poisson
processes. The probability of a pair configuration with
n+ (n�) crossings from the right (left) is then

p(n+, n�) =
1

n+!

1

n�!
Q

n++n�
e

�2Q (16)

with

Q = t⇢

Z 1

0
dv vf(v) , (17)

where ⇢ is the total density of pairs.
The domain l1 of �(x, 0) lies necessarily between two

pairs. If s = n+�n� is even, then so does the domain l2 =
(l1+s) at t = 0+, so the two domains are separated by s/2
soliton-antisoliton pairs and consequently have the same
� values: �l2 � �l1 = �(x, t) � �(x, 0) = 0. If s is odd,
then the l

th
2 domain at t = 0+ lies between the members

of the same pair which can be a soliton or antisoliton
with equal probability. Averaging over the charge of this
kink gives (ei2⇡↵/�+e

�i2⇡↵/�)/2 = cos(2⇡↵/�). The final
result for the expectation value is then
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where C↵ is the vacuum correlation function (!).
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We start by calculating the time evolution of the ex-
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⌦
e

i↵�(x,t)
↵
for initial states having only

soliton-antisoliton pairs, so each pair has zero net topo-
logical charge. For this we need to determine in which
domain lies the point (x, t) and then the value of � in
that domain. Since �(x, t = 0) = 0, it su�ces to know
the number of domains s we shift to the left or to the
right while we travel along the straight vertical line con-
necting the points (x, 0) and (x, t). In other words, we
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Clearly, at most one ray from each pair can intersect
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segment from the left must be the right member of a pair
originating from the spatial interval [(x � vt, 0), (x, 0)].
Because the pairs are created uniformly at t = 0, the
probability that the right going ray of a given pair with
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where f(v) = f+�(v) + f�+(v). Due to the parity sym-
metry and translational invariance, the probability that
the left going ray of a given pair intersects from the right
is also p. Since the pairs are independent from each other,
the left and right intersections are independent Poisson
processes. The probability of a pair configuration with
n+ (n�) crossings from the right (left) is then
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�2Q (16)

with
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where ⇢ is the total density of pairs.
The domain l1 of �(x, 0) lies necessarily between two

pairs. If s = n+�n� is even, then so does the domain l2 =
(l1+s) at t = 0+, so the two domains are separated by s/2
soliton-antisoliton pairs and consequently have the same
� values: �l2 � �l1 = �(x, t) � �(x, 0) = 0. If s is odd,
then the l
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2 domain at t = 0+ lies between the members

of the same pair which can be a soliton or antisoliton
with equal probability. Averaging over the charge of this
kink gives (ei2⇡↵/�+e

�i2⇡↵/�)/2 = cos(2⇡↵/�). The final
result for the expectation value is then
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D
e

i↵�(x,t)
E
⇠

1X

n+,n�=0

p(n+, n�)

✓
1 + (�1)n+�n�

2
+

1� (�1)n+�n�

2
cos(2⇡↵/�)

◆

= cos2(⇡↵/�) + sin2(⇡↵/�)
X

n+,n�

(�1)n++n�
1

n+!

1

n�!
Q

n++n�
e

�2Q = cos2(⇡↵/�) + sin2(⇡↵/�)e�t/⌧
,

(18)

where G↵ =
⌦
e

i↵�(x,t)
↵
vac

is the vacuum expectation
value computed exactly in [? ], and the characteristic
time is given by

⌧

�1 = 4⇢

Z 1

0
dvvf(v) . (19)

The expectation value thus exponentially approaches an
↵-dependent constant where the time scale of the relax-
ation is independent of ↵, that is, independent of the
operator.

The non-zero asymptotic value can be under-

stood as follows.

Expanding the result (18) for small t we obtain
⌦
e

i↵�(x,t)
↵

G↵
= 1� sin2(⇡↵/�)

t

⌧

+O(t2) . (20)

This result has also been found in Ref. [? ] through the
linked cluster expansion. There, lacking the higher or-
ders, assuming a pure exponential decay an operator de-
pendent decay rate, ⌧�1

↵ = sin2(⇡↵/�)⌧�1
, was defined.

The asymptotic value is zero for ↵ = �/2 + k⇡, k 2 Z,
resulting in a pure exponential decay. For these operators
we can compute the expectation value without assuming
f++(v) = f��(v) = 0, i.e. that only soliton-antisoliton
pairs are present. This is because due to e

i�/2·� = ±1 we
have a sequence of domains with alternating sign, and
the kinks simply flip the sign independently form their
charge. The calculation thus becomes identical to that in
the Ising field theory: the expectation value only depends
on the parity of the number of intersecting trajectories,
so

⌦
e

i��(x,t)/2
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G�/2
=

1X
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p(n+, n�)(�1)n+�n�

=
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where now f(v) =
P

ab fab(v). This is the exponential
decay found by Ref. [? ], where the decay rate was written
as

⌧

�1 = 4mc

2

Z 1

0

d✓
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X

a,b

|Kab(✓)|2 sinh ✓ . (22)

From relation (9) it follows that the two expressions, Eqs.
(19) and (22) coincide. Note that in Ref. [? ] the rep-
resentative state approach was based on a steady state

computed in the leading order in the kink density but the
series describing the time evolution was resummed. It is
thus a non-trivial result that the semiclassical approach
completely reproduces the result.
For ↵ = �+k⇡ we get

⌦
e

i��(x,t)
↵
= G� , so the evolution

of the operator ei�� (trace of EM tensor?) is invisible
to the semiclassical approach. We note that the form fac-
tor calculation of Ref. [? ] does not provide information
on this correlator either. Possible reasons?

IV. RELAXATION OF CORRELATION
FUNCTIONS

A. ↵ = �/2

Let us start by calculating the dynamical two-point
function of the operator ei��/2 with no restriction on the
type of pairs. As we saw in the previous section, this is a
particularly simple case since

e

i�/2[�(x,t)��(x0,t0)] = (�1)
Ps

i=1 mi = (�1)n , (23)

where n is the total number of trajectories intersecting
the [(x, t), (x0

, t

0)] segment connecting the two operator
insertion points. This feature is the reason why we can
allow general initial states with all possible kinds of kink
pairs.
Pairs of which both rays intersect the segment do not

contribute. Let us compute the probability q that exactly
one ray of a given pair crosses the segment. Without the
loss of generality we shall assume that x0

> x. It will be
useful to define

ṽ =
x

0 � x

t

0 + t

, vs =
x

0 � x

t

0 � t

. (24)

It is a simple exercise to check that if v < ṽ then both
rays of a pair can cross the segment and thus the suitable
domain consists of two intervals of length 2vt and 2vt0.
For v > ṽ there are also two intervals of lengths |(x0 �
x)� v(t0 � t)| and |(x0 � x) + v(t0 � t)| (this covers both
t

0
> t and t

0
< t cases). So the probability that one of the

two rays of a pair with velocity v intersects the segment
is

qv = ⇥(ṽ�v)
2v(t+ t

0)

L

+⇥(v�ṽ)
|�x� v�t|+ |�x+ v�t|

L

,

(25)
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where G↵ =
⌦
e

i↵�(x,t)
↵
vac

is the vacuum expectation
value computed exactly in [? ], and the characteristic
time is given by

⌧

�1 = 4⇢

Z 1

0
dvvf(v) . (19)

The expectation value thus exponentially approaches an
↵-dependent constant where the time scale of the relax-
ation is independent of ↵, that is, independent of the
operator.
The non-zero asymptotic value can be under-

stood as follows.

Expanding the result (18) for small t we obtain
⌦
e

i↵�(x,t)
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G↵
= 1� sin2(⇡↵/�)

t

⌧

+O(t2) . (20)

This result has also been found in Ref. [? ] through the
linked cluster expansion. There, lacking the higher or-
ders, assuming a pure exponential decay an operator de-
pendent decay rate, ⌧�1

↵ = sin2(⇡↵/�)⌧�1
, was defined.

The asymptotic value is zero for ↵ = �/2 + k⇡, k 2 Z,
resulting in a pure exponential decay. For these operators
we can compute the expectation value without assuming
f++(v) = f��(v) = 0, i.e. that only soliton-antisoliton
pairs are present. This is because due to e

i�/2·� = ±1 we
have a sequence of domains with alternating sign, and
the kinks simply flip the sign independently form their
charge. The calculation thus becomes identical to that in
the Ising field theory: the expectation value only depends
on the parity of the number of intersecting trajectories,
so

⌦
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i��(x,t)/2
↵
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=
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p(n+, n�)(�1)n+�n�

=
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where now f(v) =
P

ab fab(v). This is the exponential
decay found by Ref. [? ], where the decay rate was written
as

⌧

�1 = 4mc
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From relation (9) it follows that the two expressions, Eqs.
(19) and (22) coincide. Note that in Ref. [? ] the rep-
resentative state approach was based on a steady state

computed in the leading order in the kink density but the
series describing the time evolution was resummed. It is
thus a non-trivial result that the semiclassical approach
completely reproduces the result.
For ↵ = �+k⇡ we get

⌦
e

i��(x,t)
↵
= G� , so the evolution

of the operator ei�� (trace of EM tensor?) is invisible
to the semiclassical approach. We note that the form fac-
tor calculation of Ref. [? ] does not provide information
on this correlator either. Possible reasons?

IV. RELAXATION OF CORRELATION
FUNCTIONS

A. ↵ = �/2

Let us start by calculating the dynamical two-point
function of the operator ei��/2 with no restriction on the
type of pairs. As we saw in the previous section, this is a
particularly simple case since

e

i�/2[�(x,t)��(x0,t0)] = (�1)
Ps

i=1 mi = (�1)n , (23)

where n is the total number of trajectories intersecting
the [(x, t), (x0

, t

0)] segment connecting the two operator
insertion points. This feature is the reason why we can
allow general initial states with all possible kinds of kink
pairs.
Pairs of which both rays intersect the segment do not

contribute. Let us compute the probability q that exactly
one ray of a given pair crosses the segment. Without the
loss of generality we shall assume that x0

> x. It will be
useful to define

ṽ =
x

0 � x

t

0 + t

, vs =
x

0 � x

t

0 � t

. (24)

It is a simple exercise to check that if v < ṽ then both
rays of a pair can cross the segment and thus the suitable
domain consists of two intervals of length 2vt and 2vt0.
For v > ṽ there are also two intervals of lengths |(x0 �
x)� v(t0 � t)| and |(x0 � x) + v(t0 � t)| (this covers both
t

0
> t and t

0
< t cases). So the probability that one of the

two rays of a pair with velocity v intersects the segment
is

qv = ⇥(ṽ�v)
2v(t+ t

0)
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+⇥(v�ṽ)
|�x� v�t|+ |�x+ v�t|

L

,

(25)
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where G↵ =
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e

i↵�(x,t)
↵
vac

is the vacuum expectation
value computed exactly in [? ], and the characteristic
time is given by

⌧

�1 = 4⇢

Z 1

0
dvvf(v) . (19)

The expectation value thus exponentially approaches an
↵-dependent constant where the time scale of the relax-
ation is independent of ↵, that is, independent of the
operator.

The non-zero asymptotic value can be under-

stood as follows.

Expanding the result (18) for small t we obtain
⌦
e

i↵�(x,t)
↵

G↵
= 1� sin2(⇡↵/�)

t

⌧

+O(t2) . (20)

This result has also been found in Ref. [? ] through the
linked cluster expansion. There, lacking the higher or-
ders, assuming a pure exponential decay an operator de-
pendent decay rate, ⌧�1

↵ = sin2(⇡↵/�)⌧�1
, was defined.

The asymptotic value is zero for ↵ = �/2 + k⇡, k 2 Z,
resulting in a pure exponential decay. For these operators
we can compute the expectation value without assuming
f++(v) = f��(v) = 0, i.e. that only soliton-antisoliton
pairs are present. This is because due to e

i�/2·� = ±1 we
have a sequence of domains with alternating sign, and
the kinks simply flip the sign independently form their
charge. The calculation thus becomes identical to that in
the Ising field theory: the expectation value only depends
on the parity of the number of intersecting trajectories,
so

⌦
e

i��(x,t)/2
↵

G�/2
=
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n+,n�=0

p(n+, n�)(�1)n+�n�

=
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where now f(v) =
P

ab fab(v). This is the exponential
decay found by Ref. [? ], where the decay rate was written
as
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�1 = 4mc
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From relation (9) it follows that the two expressions, Eqs.
(19) and (22) coincide. Note that in Ref. [? ] the rep-
resentative state approach was based on a steady state

computed in the leading order in the kink density but the
series describing the time evolution was resummed. It is
thus a non-trivial result that the semiclassical approach
completely reproduces the result.
For ↵ = �+k⇡ we get

⌦
e

i��(x,t)
↵
= G� , so the evolution

of the operator ei�� (trace of EM tensor?) is invisible
to the semiclassical approach. We note that the form fac-
tor calculation of Ref. [? ] does not provide information
on this correlator either. Possible reasons?

IV. RELAXATION OF CORRELATION
FUNCTIONS

A. ↵ = �/2

Let us start by calculating the dynamical two-point
function of the operator ei��/2 with no restriction on the
type of pairs. As we saw in the previous section, this is a
particularly simple case since

e

i�/2[�(x,t)��(x0,t0)] = (�1)
Ps

i=1 mi = (�1)n , (23)

where n is the total number of trajectories intersecting
the [(x, t), (x0

, t

0)] segment connecting the two operator
insertion points. This feature is the reason why we can
allow general initial states with all possible kinds of kink
pairs.
Pairs of which both rays intersect the segment do not

contribute. Let us compute the probability q that exactly
one ray of a given pair crosses the segment. Without the
loss of generality we shall assume that x0

> x. It will be
useful to define

ṽ =
x

0 � x

t

0 + t
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. (24)

It is a simple exercise to check that if v < ṽ then both
rays of a pair can cross the segment and thus the suitable
domain consists of two intervals of length 2vt and 2vt0.
For v > ṽ there are also two intervals of lengths |(x0 �
x)� v(t0 � t)| and |(x0 � x) + v(t0 � t)| (this covers both
t

0
> t and t

0
< t cases). So the probability that one of the

two rays of a pair with velocity v intersects the segment
is

qv = ⇥(ṽ�v)
2v(t+ t
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where G↵ =
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i↵�(x,t)
↵
vac

is the vacuum expectation
value computed exactly in [? ], and the characteristic
time is given by

⌧
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Z 1
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The expectation value thus exponentially approaches an
↵-dependent constant where the time scale of the relax-
ation is independent of ↵, that is, independent of the
operator.

The non-zero asymptotic value can be under-

stood as follows.

Expanding the result (18) for small t we obtain
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G↵
= 1� sin2(⇡↵/�)
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This result has also been found in Ref. [? ] through the
linked cluster expansion. There, lacking the higher or-
ders, assuming a pure exponential decay an operator de-
pendent decay rate, ⌧�1

↵ = sin2(⇡↵/�)⌧�1
, was defined.

The asymptotic value is zero for ↵ = �/2 + k⇡, k 2 Z,
resulting in a pure exponential decay. For these operators
we can compute the expectation value without assuming
f++(v) = f��(v) = 0, i.e. that only soliton-antisoliton
pairs are present. This is because due to e

i�/2·� = ±1 we
have a sequence of domains with alternating sign, and
the kinks simply flip the sign independently form their
charge. The calculation thus becomes identical to that in
the Ising field theory: the expectation value only depends
on the parity of the number of intersecting trajectories,
so
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=
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where now f(v) =
P

ab fab(v). This is the exponential
decay found by Ref. [? ], where the decay rate was written
as
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From relation (9) it follows that the two expressions, Eqs.
(19) and (22) coincide. Note that in Ref. [? ] the rep-
resentative state approach was based on a steady state

computed in the leading order in the kink density but the
series describing the time evolution was resummed. It is
thus a non-trivial result that the semiclassical approach
completely reproduces the result.
For ↵ = �+k⇡ we get

⌦
e

i��(x,t)
↵
= G� , so the evolution

of the operator ei�� (trace of EM tensor?) is invisible
to the semiclassical approach. We note that the form fac-
tor calculation of Ref. [? ] does not provide information
on this correlator either. Possible reasons?

IV. RELAXATION OF CORRELATION
FUNCTIONS

A. ↵ = �/2

Let us start by calculating the dynamical two-point
function of the operator ei��/2 with no restriction on the
type of pairs. As we saw in the previous section, this is a
particularly simple case since

e

i�/2[�(x,t)��(x0,t0)] = (�1)
Ps

i=1 mi = (�1)n , (23)

where n is the total number of trajectories intersecting
the [(x, t), (x0

, t

0)] segment connecting the two operator
insertion points. This feature is the reason why we can
allow general initial states with all possible kinds of kink
pairs.
Pairs of which both rays intersect the segment do not

contribute. Let us compute the probability q that exactly
one ray of a given pair crosses the segment. Without the
loss of generality we shall assume that x0

> x. It will be
useful to define

ṽ =
x

0 � x

t

0 + t

, vs =
x
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t
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. (24)

It is a simple exercise to check that if v < ṽ then both
rays of a pair can cross the segment and thus the suitable
domain consists of two intervals of length 2vt and 2vt0.
For v > ṽ there are also two intervals of lengths |(x0 �
x)� v(t0 � t)| and |(x0 � x) + v(t0 � t)| (this covers both
t

0
> t and t

0
< t cases). So the probability that one of the

two rays of a pair with velocity v intersects the segment
is

qv = ⇥(ṽ�v)
2v(t+ t
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|�x� v�t|+ |�x+ v�t|
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,

(25)
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where ⇥(x) is the Heaviside function, �x = x

0�x, �t =
t

0 � t. Then the probability that only one ray of a given
pair will cross is q =

R1
0 dvf(v)qv, so the weight of a

configuration having n crossings is

p(n) =
1

n!
Q

n
e

�Q
, (26)

where

Q = Nq = 2⇢(t+ t

0)

Z ṽ

0
dvf(v)v

+ 2⇢(x0 � x)

Z vs

ṽ

dvf(v) + 2⇢|t0 � t|
Z 1

vs

dvf(v)v (27)

with f(v) =
P

ab fab(v). We obtain the correlator by
summing over all possible crossing numbers weighted
with their probability:

C̄�/2(�x; t, t0) =
X

n

1

n!
Q

n
e

�Q(�1)n = e

�2Q
, (28)

where C̄�/2(�x; t, t0) ⌘ C�/2(�x; t, t0)/C�/2(�x;�t).
Explicitly,

C̄�/2(�x; t, t0) = exp

(
�4⇢(t+ t

0)

Z ṽ

0
dvf(v)v

)
exp

⇢
�4⇢(x0 � x)

Z vs

ṽ

dvf(v)

�
exp

⇢
�4⇢|t0 � t|

Z 1

vs

dvf(v)v

�
.

(29)

This expression agrees with the scaling limit of the ex-
act result [34] for the transverse field Ising chain once
an appropriate f(v) function is used in it. Naturally, it
can also be obtained by taking the scaling limit of the
result for the Ising chain presented in Ref. [65]. This
relation between the quenches on the chain and in the
field theory was observed in Ref. [54], where it was found
that the asymptotic time evolution of the order param-
eter after a mass quench within the paramagnetic phase
of the Ising field theory agrees with the scaling limit of
the time dependent magnetization of the Ising spin chain
after quenching the magnetic field. The same relation be-
tween the semiclassical results strongly suggests that this
holds true for several, perhaps all local observables. This
is non-trivial regarding that a sudden quench can excite
high energy states and there is no obvious reason why
the field theory should capture the quench dynamics of
the spin chain.

B. General result

Let us turn to the calculation of the time dependent
correlation function

C↵(x, x
0; t, t0) =

D
e

i↵�(x,t)
e

�i↵�(x0,t0)
E
. (30)

For the sake of simplicity, let us assume that x0 � x, t

0 �
t, the other cases are then easy to obtain exploiting
the symmetries of the problem. We restrict the analysis
to the case when there are only soliton-antisoliton and
antisoliton-soliton pairs present with the same velocity
distribution. As we mentioned, initial states with fixed �
values fall into this class.

For a generic vertex operator (↵ arbitrary), the cal-
culation of the correlation function is similar to that of
the expectation value but it is more di�cult due to the
fact that none of the two domains of the operator inser-
tion points are fixed. According to Eq. (13) we need to
determine the average number of domains between these
points. In order to keep track of the possible e↵ects of
the pairs on this number we divide them into six disjoint
classes based on their position and velocity. Represen-
tative examples of these classes are shown in Fig. 2. In
the first class there are avoiding pairs of kinks with both
rays lying to the right (RR) or to the left (LL) from the
segment connecting the points (x, t) and (x0

, t

0) (an LL
pair is shown in Fig. 2), these do not a↵ect the correla-
tion. There are double crossing pairs (D) with both rays
crossing the segment. There are pairs such that the seg-
ment lies in between the two rays, so they give inclusions
(I). We call left crossing (L) the pairs whose right going
ray has a trajectory that crosses from the left (hence the
notation L) and from below, while the left going ray of
the same pair avoids the segment. These pairs necessarily
have velocities v < vs. We define in an analogous way the
right crossing pairs (R) that can have arbitrary velocity.
Crucial role is played by those pairs whose right going
ray crosses the segment “from above” (A) (see Fig. 2f).
This is only possible if the velocity of the pair is greater
than vs.

The probabilities that a given pair belongs to either of
these classes are calculated based on the uniform spatial
distribution of the pairs, in the same way as the probabili-
ties in the previous sections. For example, the probability
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(a) Avoiding pair (LL).

x

x'

(b) Left cut (L).

x

x'

(c) Rigth cut (R).

x

x'

(d) Double cut (D)

x

x'

(e) Inclusion (I). (f) Left cut “from above”

(A).

FIG. 2: Representative examples of the classes of paris
defined in the main text.

that a given pair belongs to class ‘L’ for t0 > t is

qL =
1

L

Z ṽ

0
dv2vtf(v) +

1

L

Z vs

ṽ

dv[x0 � x� v(t0 � t)]f(v)

(31)

with f(v) = f+�(v) + f�+(v) = 2f+�(v). The probabili-
ties for the other classes are listed in the Appendix.

The point in defining these classes is that in a given
configuration the number of domains between the two
operators can be expressed through the number of pairs
in each class. Counting the domains from the left, the
point (x, t) is in the domain l = 2nLL + nL + nI + 2nA

and the point (x0
, t

0) is in the domain l

0 = 2nLL +2nL +
nR + 2nD + nI + nA. Thus the number of kinks between
the two points is

s = l

0 � l = nL + nR + 2nD � nA . (32)

Let us focus on the average over the charges of these
s kinks. If s is odd we have to average over the charge
of the single kink without a pair which gives (ei2⇡↵/� +
e

�i2⇡↵/�)/2 = cos(2⇡↵/�). If s is even there are two
possibilities: either both l and l

0 are even, so the s kinks
form s/2 pairs and �l0 � �l = 0, or both l and l

0 are
odd, in which case we have s/2 � 1 pairs and two un-
paired kinks. Averaging over the charges of these two
kinks yields cos2(2⇡↵/�) . We have to separate the s = 0
case when �l0 � �l = 0 irrespectively of the parity of l.
Note that the s = 0 configurations can be non-trivial due
to the existence of the special cuts from above (A) that
shift back the domain of �(x0

, t

0) (see Fig. 2f).

Since only the parity of s and l matters, averaging over
the velocities and positions of the pairs translates into a
multiple sum over the numbers of the various types of
pairs weighted by the probability of such a configuration:

C̄↵(x, x
0; t, t0) =

X
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1
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D Q
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I e
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where Qµ = Nqµ with the probabilities qµ listed in the Appendix.
The terms not multiplied by the Kronecker �s,0 can be written, collecting the sign factors and using some basic

trigonometric identities, as
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�2QR�2QA) . (34)

The terms proportional to �s,0 can be dealt with by using the integral representation for the Kronecker delta,
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. (35)
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FIG. 2: Representative examples of the classes of paris
defined in the main text.

that a given pair belongs to class ‘L’ for t0 > t is

qL =
1

L

Z ṽ

0
dv2vtf(v) +

1

L

Z vs

ṽ

dv[x0 � x� v(t0 � t)]f(v)

(31)

with f(v) = f+�(v) + f�+(v) = 2f+�(v). The probabili-
ties for the other classes are listed in the Appendix.

The point in defining these classes is that in a given
configuration the number of domains between the two
operators can be expressed through the number of pairs
in each class. Counting the domains from the left, the
point (x, t) is in the domain l = 2nLL + nL + nI + 2nA

and the point (x0
, t

0) is in the domain l

0 = 2nLL +2nL +
nR + 2nD + nI + nA. Thus the number of kinks between
the two points is

s = l

0 � l = nL + nR + 2nD � nA . (32)

Let us focus on the average over the charges of these
s kinks. If s is odd we have to average over the charge
of the single kink without a pair which gives (ei2⇡↵/� +
e

�i2⇡↵/�)/2 = cos(2⇡↵/�). If s is even there are two
possibilities: either both l and l

0 are even, so the s kinks
form s/2 pairs and �l0 � �l = 0, or both l and l

0 are
odd, in which case we have s/2 � 1 pairs and two un-
paired kinks. Averaging over the charges of these two
kinks yields cos2(2⇡↵/�) . We have to separate the s = 0
case when �l0 � �l = 0 irrespectively of the parity of l.
Note that the s = 0 configurations can be non-trivial due
to the existence of the special cuts from above (A) that
shift back the domain of �(x0

, t

0) (see Fig. 2f).

Since only the parity of s and l matters, averaging over
the velocities and positions of the pairs translates into a
multiple sum over the numbers of the various types of
pairs weighted by the probability of such a configuration:
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where Qµ = Nqµ with the probabilities qµ listed in the Appendix.
The terms not multiplied by the Kronecker �s,0 can be written, collecting the sign factors and using some basic

trigonometric identities, as
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�2QR�2QA) . (34)

The terms proportional to �s,0 can be dealt with by using the integral representation for the Kronecker delta,
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. (35)
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FIG. 2: Representative examples of the classes of paris
defined in the main text.

that a given pair belongs to class ‘L’ for t0 > t is

qL =
1

L

Z ṽ

0
dv2vtf(v) +

1

L

Z vs

ṽ

dv[x0 � x� v(t0 � t)]f(v)

(31)

with f(v) = f+�(v) + f�+(v) = 2f+�(v). The probabili-
ties for the other classes are listed in the Appendix.

The point in defining these classes is that in a given
configuration the number of domains between the two
operators can be expressed through the number of pairs
in each class. Counting the domains from the left, the
point (x, t) is in the domain l = 2nLL + nL + nI + 2nA

and the point (x0
, t

0) is in the domain l

0 = 2nLL +2nL +
nR + 2nD + nI + nA. Thus the number of kinks between
the two points is

s = l

0 � l = nL + nR + 2nD � nA . (32)

Let us focus on the average over the charges of these
s kinks. If s is odd we have to average over the charge
of the single kink without a pair which gives (ei2⇡↵/� +
e

�i2⇡↵/�)/2 = cos(2⇡↵/�). If s is even there are two
possibilities: either both l and l

0 are even, so the s kinks
form s/2 pairs and �l0 � �l = 0, or both l and l

0 are
odd, in which case we have s/2 � 1 pairs and two un-
paired kinks. Averaging over the charges of these two
kinks yields cos2(2⇡↵/�) . We have to separate the s = 0
case when �l0 � �l = 0 irrespectively of the parity of l.
Note that the s = 0 configurations can be non-trivial due
to the existence of the special cuts from above (A) that
shift back the domain of �(x0

, t

0) (see Fig. 2f).

Since only the parity of s and l matters, averaging over
the velocities and positions of the pairs translates into a
multiple sum over the numbers of the various types of
pairs weighted by the probability of such a configuration:

C̄↵(x, x
0; t, t0) =
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where Qµ = Nqµ with the probabilities qµ listed in the Appendix.
The terms not multiplied by the Kronecker �s,0 can be written, collecting the sign factors and using some basic

trigonometric identities, as
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�2QR�2QA) . (34)

The terms proportional to �s,0 can be dealt with by using the integral representation for the Kronecker delta,

�m,0 =

Z ⇡

�⇡

d�

2⇡
e

im�
. (35)
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defined in the main text.

that a given pair belongs to class ‘L’ for t0 > t is

qL =
1

L

Z ṽ

0
dv2vtf(v) +

1

L

Z vs

ṽ

dv[x0 � x� v(t0 � t)]f(v)

(31)

with f(v) = f+�(v) + f�+(v) = 2f+�(v). The probabili-
ties for the other classes are listed in the Appendix.

The point in defining these classes is that in a given
configuration the number of domains between the two
operators can be expressed through the number of pairs
in each class. Counting the domains from the left, the
point (x, t) is in the domain l = 2nLL + nL + nI + 2nA

and the point (x0
, t

0) is in the domain l

0 = 2nLL +2nL +
nR + 2nD + nI + nA. Thus the number of kinks between
the two points is

s = l

0 � l = nL + nR + 2nD � nA . (32)

Let us focus on the average over the charges of these
s kinks. If s is odd we have to average over the charge
of the single kink without a pair which gives (ei2⇡↵/� +
e

�i2⇡↵/�)/2 = cos(2⇡↵/�). If s is even there are two
possibilities: either both l and l

0 are even, so the s kinks
form s/2 pairs and �l0 � �l = 0, or both l and l

0 are
odd, in which case we have s/2 � 1 pairs and two un-
paired kinks. Averaging over the charges of these two
kinks yields cos2(2⇡↵/�) . We have to separate the s = 0
case when �l0 � �l = 0 irrespectively of the parity of l.
Note that the s = 0 configurations can be non-trivial due
to the existence of the special cuts from above (A) that
shift back the domain of �(x0

, t

0) (see Fig. 2f).

Since only the parity of s and l matters, averaging over
the velocities and positions of the pairs translates into a
multiple sum over the numbers of the various types of
pairs weighted by the probability of such a configuration:
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where Qµ = Nqµ with the probabilities qµ listed in the Appendix.
The terms not multiplied by the Kronecker �s,0 can be written, collecting the sign factors and using some basic

trigonometric identities, as
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�2QR�2QA) . (34)

The terms proportional to �s,0 can be dealt with by using the integral representation for the Kronecker delta,
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that a given pair belongs to class ‘L’ for t0 > t is

qL =
1

L

Z ṽ

0
dv2vtf(v) +

1

L

Z vs

ṽ

dv[x0 � x� v(t0 � t)]f(v)

(31)

with f(v) = f+�(v) + f�+(v) = 2f+�(v). The probabili-
ties for the other classes are listed in the Appendix.

The point in defining these classes is that in a given
configuration the number of domains between the two
operators can be expressed through the number of pairs
in each class. Counting the domains from the left, the
point (x, t) is in the domain l = 2nLL + nL + nI + 2nA

and the point (x0
, t

0) is in the domain l

0 = 2nLL +2nL +
nR + 2nD + nI + nA. Thus the number of kinks between
the two points is

s = l

0 � l = nL + nR + 2nD � nA . (32)

Let us focus on the average over the charges of these
s kinks. If s is odd we have to average over the charge
of the single kink without a pair which gives (ei2⇡↵/� +
e

�i2⇡↵/�)/2 = cos(2⇡↵/�). If s is even there are two
possibilities: either both l and l

0 are even, so the s kinks
form s/2 pairs and �l0 � �l = 0, or both l and l

0 are
odd, in which case we have s/2 � 1 pairs and two un-
paired kinks. Averaging over the charges of these two
kinks yields cos2(2⇡↵/�) . We have to separate the s = 0
case when �l0 � �l = 0 irrespectively of the parity of l.
Note that the s = 0 configurations can be non-trivial due
to the existence of the special cuts from above (A) that
shift back the domain of �(x0

, t

0) (see Fig. 2f).

Since only the parity of s and l matters, averaging over
the velocities and positions of the pairs translates into a
multiple sum over the numbers of the various types of
pairs weighted by the probability of such a configuration:
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where Qµ = Nqµ with the probabilities qµ listed in the Appendix.
The terms not multiplied by the Kronecker �s,0 can be written, collecting the sign factors and using some basic

trigonometric identities, as
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�2QR�2QA) . (34)

The terms proportional to �s,0 can be dealt with by using the integral representation for the Kronecker delta,
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Appendix

In the Appendix we list the integral expressions for the probabilities that a given pair belongs to one of the classes
defined in Sec. IVB. These are calculated similarly to the probabilities computed in Sec. III and IVA, based on the
uniform spatial distribution of pairs giving rise to rays that intersect or avoid the segment connecting the two operator
insertion points in space and time. We work with the convention x

0 � x, t

0
> t and we use the notation

ṽ =
x

0 � x

t

0 + t

, vs =
x

0 � x

t

0 � t

. (A1)

• Probability that a pair leads to a double intersection

qD =
1

L

Z ṽ

0
dv[x0 � x� v(t0 + t)]f(v) . (A2)

• Probability that a pair leads to an inclusion

qI =
1

L

Z vs

ṽ

dv[v(t0 + t)� (x0 � x)]f(v) +
1

L

Z 1

vs

dv2vtf(v) . (A3)

• Probability that a pair leads to one right intersection

qR =
1

L

Z ṽ

0
dv2vt0f(v) +

1

L

Z vs

ṽ

dv[x0 � x+ v(t0 � t)]f(v) +⇥(t0 � t)
1

L

Z 1

vs

dv[x0 � x+ v(t0 � t)]f(v) . (A4)

• Probability that a pair leads to one left intersection

qL =
1

L

Z ṽ

0
dv2vtf(v) +

1

L

Z vs

ṽ

dv[x0 � x� v(t0 � t)]f(v) +⇥(t� t

0)
1

L

Z 1

vs

dv[x0 � x� v(t0 � t)]f(v) . (A5)

• Probability that a pair leads to one left intersection from above

qA = ⇥(t0 � t)
1

L

Z 1

vs

dv[x� x

0 + v(t0 � t)]f(v) . (A6)

In the correlation functions these probabilities appear multiplied by the total number of pairs N , e.g.

QD = NqD = ⇢

Z ṽ

0
dv[x0 � x� v(t0 + t)]f(v) . (A7)

We write down the expressions is some special limits.

1. For the autocorrelation function x = x

0 so both ṽ = vs = 0, and

QD = QL = 0 , QR = QA =
t

0 � t

4⌧
, QI =

t

2⌧
, (A8)

where

⌧

�1 ⌘ 4⇢

Z 1

0
dvvf(v) . (A9)

2. For the equal time correlation function t = t

0
, the velocities become ṽ = �x/(2t), vs = 1, and

QD = ⇢

Z ṽ

0
dv(�x� 2vt)f(v) , QI = ⇢

Z 1

ṽ

dv(2vt��x)f(v) =
t

2⌧
� ⇢�x+QD , (A10a)

QA = 0 , QL = QR = 2t ⇢

Z ṽ

0
dvvf(v) +�x ⇢

Z 1

ṽ

dvf(v) = ⇢�x�QD , (A10b)

where we used
R1
0 dvf(v) = 1.
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Going through the steps made for C1 we arrive at

C2 = 2 sin2 (⇡↵/�) cos2 (⇡↵/�)

Z ⇡

�⇡

d�

2⇡
e

(ei��1)QR+(e2i��1)QD+(e�i��1)QA

⇣
e

(ei��1)QL � e

�(ei�+1)QL�2QI

⌘
. (36)

The total result for the correlator normalized by its vacuum value is then

C̄↵(x, x
0; t, t0) =

cos4 (⇡↵/�) + sin4 (⇡↵/�) e�2QR�2QL�2QA + sin2 (⇡↵/�) cos2 (⇡↵/�) e�2QI (e�2QL + e

�2QR�2QA)

+ 2 sin2 (⇡↵/�) cos2 (⇡↵/�) e�(QL+QR+QD+QA)

Z ⇡

�⇡

d�

2⇡
e

QRei�+QDe2i�+QAe�i�
⇣
e

QLei� � e

�QLei��2QI

⌘
. (37)

Note that expanding in ↵ to second order and di↵erentiating with respect to x and x

0 yields the topological charge
density correlation function.

C. Discussion of the result

In this section we analyze the general result in Eq.
(37) by examining its behavior for various special physi-
cal cases and limits. After discussing special values of ↵,
we analyze the autocorrelation function, the equal time
correlation function, and the asymptotic dynamic two-
point functions for late times.

First we note that setting ↵ = �/2 + k⇡ Eq. (37) sim-
plifies to

C̄�/2(x, x
0; t, t0) = e

�2QR�2QL�2QA
, (38)

and we recover the result (28) upon noting that Q =

QR +QL +QA where Q was defined in Eq. (27). For the
correlations with ↵ = � + k⇡ the semiclassical calcula-
tion gives C̄�(x, x0; t, t0) = 1, similarly to the expectation
value.

1. Autocorrelation function

The autocorrelation function is obtained by setting x =
x

0
. Using the special values of the Q functions in this case

listed in Eq. (A8) of the Appendix, the autocorrelation
function is

C̄↵(0; t, t
0) = cos4 (⇡↵/�) + sin4 (⇡↵/�) e��t/⌧

+ sin2 (⇡↵/�) cos2 (⇡↵/�)


e

�t/⌧ (1 + e

��t/⌧ ) + 2e��t/(2⌧)(1� e

�t/⌧ )I0

✓
�t

2⌧

◆�
, (39)

where �t = t

0 � t and ⌧ is the characteristic relaxation
time of the expectation value found in Eq. (19). It is
easy to check that as �t ! 0 we recover the trivial result
C̄↵(0; t, t) = 1.

The autocorrelation function is shown in Fig. 3 What

is f(v)?. The most interesting feature of the result is its
behavior for large time separation. As t

0 ! 1 while t

is being kept fixed, using the asymptotic behavior of the
Bessel function we find

C̄↵(0; t, t
0 ! 1) = cos4 (⇡↵/�)

+sin2 (⇡↵/�) cos2 (⇡↵/�)

"
e

�t/⌧ + 2(1� e

�t/⌧ )
1p

⇡�t/⌧

#
.

(40)

As �t ! 1, the autocorrelation function approaches a
t-dependent non-zero constant which equals the product
of expectation values given in Eq. (18) at times t and
t +�t ! 1, as it should (the normalization factor also
factorizes, C↵(0; t, t0)vac = G2

↵.). For any t > 0 the late
time behavior is di↵usive. This is similar to the behav-
ior found in the semiclassical approximation for thermal
equilibrium [62–64]. Interestingly, the di↵usive term van-
ishes only for t = 0 in which case we regain the exponen-
tial behavior found for the expectation value:

C̄↵(0; 0, t
0) = cos2 (⇡↵/�) + sin2 (⇡↵/�) e�t0/⌧

. (41)

It is interesting to note that for ↵ = �/2 + k⇡,

C̄�/2(0; t, t
0) = e

��t/⌧ (42)
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Going through the steps made for C1 we arrive at

C2 = 2 sin2 (⇡↵/�) cos2 (⇡↵/�)

Z ⇡

�⇡

d�

2⇡
e

(ei��1)QR+(e2i��1)QD+(e�i��1)QA

⇣
e

(ei��1)QL � e

�(ei�+1)QL�2QI

⌘
. (36)

The total result for the correlator normalized by its vacuum value is then

C̄↵(x, x
0; t, t0) =

cos4 (⇡↵/�) + sin4 (⇡↵/�) e�2QR�2QL�2QA + sin2 (⇡↵/�) cos2 (⇡↵/�) e�2QI (e�2QL + e

�2QR�2QA)

+ 2 sin2 (⇡↵/�) cos2 (⇡↵/�) e�(QL+QR+QD+QA)

Z ⇡

�⇡

d�

2⇡
e

QRei�+QDe2i�+QAe�i�
⇣
e

QLei� � e

�QLei��2QI

⌘
. (37)

Note that expanding in ↵ to second order and di↵erentiating with respect to x and x

0 yields the topological charge
density correlation function.

C. Discussion of the result

In this section we analyze the general result in Eq.
(37) by examining its behavior for various special physi-
cal cases and limits. After discussing special values of ↵,
we analyze the autocorrelation function, the equal time
correlation function, and the asymptotic dynamic two-
point functions for late times.

First we note that setting ↵ = �/2 + k⇡ Eq. (37) sim-
plifies to

C̄�/2(x, x
0; t, t0) = e

�2QR�2QL�2QA
, (38)

and we recover the result (28) upon noting that Q =

QR +QL +QA where Q was defined in Eq. (27). For the
correlations with ↵ = � + k⇡ the semiclassical calcula-
tion gives C̄�(x, x0; t, t0) = 1, similarly to the expectation
value.

1. Autocorrelation function

The autocorrelation function is obtained by setting x =
x

0
. Using the special values of the Q functions in this case

listed in Eq. (A8) of the Appendix, the autocorrelation
function is

C̄↵(0; t, t
0) = cos4 (⇡↵/�) + sin4 (⇡↵/�) e��t/⌧

+ sin2 (⇡↵/�) cos2 (⇡↵/�)


e

�t/⌧ (1 + e

��t/⌧ ) + 2e��t/(2⌧)(1� e

�t/⌧ )I0

✓
�t

2⌧

◆�
, (39)

where �t = t

0 � t and ⌧ is the characteristic relaxation
time of the expectation value found in Eq. (19). It is
easy to check that as �t ! 0 we recover the trivial result
C̄↵(0; t, t) = 1.

The autocorrelation function is shown in Fig. 3 What

is f(v)?. The most interesting feature of the result is its
behavior for large time separation. As t

0 ! 1 while t

is being kept fixed, using the asymptotic behavior of the
Bessel function we find

C̄↵(0; t, t
0 ! 1) = cos4 (⇡↵/�)

+sin2 (⇡↵/�) cos2 (⇡↵/�)

"
e

�t/⌧ + 2(1� e

�t/⌧ )
1p

⇡�t/⌧

#
.

(40)

As �t ! 1, the autocorrelation function approaches a
t-dependent non-zero constant which equals the product
of expectation values given in Eq. (18) at times t and
t +�t ! 1, as it should (the normalization factor also
factorizes, C↵(0; t, t0)vac = G2

↵.). For any t > 0 the late
time behavior is di↵usive. This is similar to the behav-
ior found in the semiclassical approximation for thermal
equilibrium [62–64]. Interestingly, the di↵usive term van-
ishes only for t = 0 in which case we regain the exponen-
tial behavior found for the expectation value:

C̄↵(0; 0, t
0) = cos2 (⇡↵/�) + sin2 (⇡↵/�) e�t0/⌧

. (41)

It is interesting to note that for ↵ = �/2 + k⇡,

C̄�/2(0; t, t
0) = e

��t/⌧ (42)
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FIG. 3: Autocorrelation function for di↵erent values of t
as a function of t0/⌧ , where ⌧ is defined in Eq. (19). The

decay is exponential for t = 0 and di↵usive
⇠ 1/

p|t0 � t| for all t > 0.

is independent of the time after the quench. This is true
also for more general initial states having pairs with non-

zero total charge, as can be seen from Eq. (29). This
instant relaxation might be an artefact of the semiclassi-
cal approximation. However, the calculation for ↵ = �/2
is equivalent to that in the Ising field theory which can
be mapped to free fermions, and in such systems simi-
lar behavior has already been seen. In Ref. [47] the exact
density-density correlation function was obtained analyt-
ically after quenching the contact interaction strength
of a non-relativistic gas of bosons from zero to infinity,
exploiting the mapping between the infinitely repulsive
Bose gas (Tonks–Girardeau gas) and free fermions. The
autocorrelation function was shown to be exactly time-
independent. Similar behavior was found for relativistic
free field theories in a di↵erent situation, after connecting
two semi-infinite systems thermalized at di↵erent tem-
peratures [71]. Thus in the case of the Ising model, the
time independence of the spin-spin autocorrelation func-
tion found in the semiclassical approach can turn out to
be an exact result.

2. Equal time two-point function

Let us turn now to the relaxation of the equal time cor-
relation function. The Q functions for t = t

0 are given in
Eqs. (A10). Since QA = 0, the �-integral in Eq. (37) can
easily be evaluated and the correlation function becomes

C̄↵(�x; t, t)

= cos4 (⇡↵/�) + sin4 (⇡↵/�) e�4⇢�x+4QD + 2 sin2 (⇡↵/�) cos2 (⇡↵/�)
h
e

QD�2⇢�x + e

�t/⌧ (1� e

�QD ])
i
, (43)

where

QD = ⇢

Z ṽ

0
dv(�x� 2vt)f(v) . (44)

It can easily be shown that for �x = 0 (QD = 0) we
regain C̄↵(0; t, t) = 1.

The correlation function is plotted in Fig. 4. At any
finite t > 0, as �x ! 1 it exponentially approaches a
constant given by

C̄↵(�x ! 1; t, t) =
h
cos2 (⇡↵/�) + sin2 (⇡↵/�) e�t/⌧

i2
.

(45)
This is the square of the expectation value at time t (c.f.
Eq. (18)), so the cluster decomposition property holds
for all times after the quench. The connected correlation
function is thus exponential ⇠ e

�⇢�x with correlation
length given by the density of kink pairs.

We get a di↵erent result if we take the t ! 1 limit
first, corresponding to the asymptotic steady state for
finite separation:

C̄↵(�x; t ! 1) =
⇥
cos2 (⇡↵/�) + sin2 (⇡↵/�) e�2⇢�x

⇤2
.

(46)
(Why is it a complete square?) The correlation
length in the asymptotic state is thus ⇠as = 2⇢. The
large separation and large time limits do not commute
because for t � �x, unlike for �x � t, the two points
become entangled by the kinks belonging to a single pair
and passing through one of the two points each.

3. Asymptotic steady state

Finally, we discuss the correlation function in the
asymptotic steady state. The asymptotic expressions of
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FIG. 3: Autocorrelation function for di↵erent values of t
as a function of t0/⌧ , where ⌧ is defined in Eq. (19). The

decay is exponential for t = 0 and di↵usive
⇠ 1/

p|t0 � t| for all t > 0.

is independent of the time after the quench. This is true
also for more general initial states having pairs with non-

zero total charge, as can be seen from Eq. (29). This
instant relaxation might be an artefact of the semiclassi-
cal approximation. However, the calculation for ↵ = �/2
is equivalent to that in the Ising field theory which can
be mapped to free fermions, and in such systems simi-
lar behavior has already been seen. In Ref. [47] the exact
density-density correlation function was obtained analyt-
ically after quenching the contact interaction strength
of a non-relativistic gas of bosons from zero to infinity,
exploiting the mapping between the infinitely repulsive
Bose gas (Tonks–Girardeau gas) and free fermions. The
autocorrelation function was shown to be exactly time-
independent. Similar behavior was found for relativistic
free field theories in a di↵erent situation, after connecting
two semi-infinite systems thermalized at di↵erent tem-
peratures [71]. Thus in the case of the Ising model, the
time independence of the spin-spin autocorrelation func-
tion found in the semiclassical approach can turn out to
be an exact result.

2. Equal time two-point function

Let us turn now to the relaxation of the equal time cor-
relation function. The Q functions for t = t

0 are given in
Eqs. (A10). Since QA = 0, the �-integral in Eq. (37) can
easily be evaluated and the correlation function becomes

C̄↵(�x; t, t)

= cos4 (⇡↵/�) + sin4 (⇡↵/�) e�4⇢�x+4QD + 2 sin2 (⇡↵/�) cos2 (⇡↵/�)
h
e

QD�2⇢�x + e

�t/⌧ (1� e

�QD ])
i
, (43)

where

QD = ⇢

Z ṽ

0
dv(�x� 2vt)f(v) . (44)

It can easily be shown that for �x = 0 (QD = 0) we
regain C̄↵(0; t, t) = 1.

The correlation function is plotted in Fig. 4. At any
finite t > 0, as �x ! 1 it exponentially approaches a
constant given by

C̄↵(�x ! 1; t, t) =
h
cos2 (⇡↵/�) + sin2 (⇡↵/�) e�t/⌧

i2
.

(45)
This is the square of the expectation value at time t (c.f.
Eq. (18)), so the cluster decomposition property holds
for all times after the quench. The connected correlation
function is thus exponential ⇠ e

�⇢�x with correlation
length given by the density of kink pairs.

We get a di↵erent result if we take the t ! 1 limit
first, corresponding to the asymptotic steady state for
finite separation:

C̄↵(�x; t ! 1) =
⇥
cos2 (⇡↵/�) + sin2 (⇡↵/�) e�2⇢�x

⇤2
.

(46)
(Why is it a complete square?) The correlation
length in the asymptotic state is thus ⇠as = 2⇢. The
large separation and large time limits do not commute
because for t � �x, unlike for �x � t, the two points
become entangled by the kinks belonging to a single pair
and passing through one of the two points each.

3. Asymptotic steady state

Finally, we discuss the correlation function in the
asymptotic steady state. The asymptotic expressions of
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FIG. 3: Autocorrelation function for di↵erent values of t
as a function of t0/⌧ , where ⌧ is defined in Eq. (19). The

decay is exponential for t = 0 and di↵usive
⇠ 1/

p|t0 � t| for all t > 0.

is independent of the time after the quench. This is true
also for more general initial states having pairs with non-

zero total charge, as can be seen from Eq. (29). This
instant relaxation might be an artefact of the semiclassi-
cal approximation. However, the calculation for ↵ = �/2
is equivalent to that in the Ising field theory which can
be mapped to free fermions, and in such systems simi-
lar behavior has already been seen. In Ref. [47] the exact
density-density correlation function was obtained analyt-
ically after quenching the contact interaction strength
of a non-relativistic gas of bosons from zero to infinity,
exploiting the mapping between the infinitely repulsive
Bose gas (Tonks–Girardeau gas) and free fermions. The
autocorrelation function was shown to be exactly time-
independent. Similar behavior was found for relativistic
free field theories in a di↵erent situation, after connecting
two semi-infinite systems thermalized at di↵erent tem-
peratures [71]. Thus in the case of the Ising model, the
time independence of the spin-spin autocorrelation func-
tion found in the semiclassical approach can turn out to
be an exact result.

2. Equal time two-point function

Let us turn now to the relaxation of the equal time cor-
relation function. The Q functions for t = t

0 are given in
Eqs. (A10). Since QA = 0, the �-integral in Eq. (37) can
easily be evaluated and the correlation function becomes

C̄↵(�x; t, t)

= cos4 (⇡↵/�) + sin4 (⇡↵/�) e�4⇢�x+4QD + 2 sin2 (⇡↵/�) cos2 (⇡↵/�)
h
e

QD�2⇢�x + e

�t/⌧ (1� e

�QD ])
i
, (43)

where

QD = ⇢

Z ṽ

0
dv(�x� 2vt)f(v) . (44)

It can easily be shown that for �x = 0 (QD = 0) we
regain C̄↵(0; t, t) = 1.

The correlation function is plotted in Fig. 4. At any
finite t > 0, as �x ! 1 it exponentially approaches a
constant given by

C̄↵(�x ! 1; t, t) =
h
cos2 (⇡↵/�) + sin2 (⇡↵/�) e�t/⌧

i2
.

(45)
This is the square of the expectation value at time t (c.f.
Eq. (18)), so the cluster decomposition property holds
for all times after the quench. The connected correlation
function is thus exponential ⇠ e

�⇢�x with correlation
length given by the density of kink pairs.

We get a di↵erent result if we take the t ! 1 limit
first, corresponding to the asymptotic steady state for
finite separation:

C̄↵(�x; t ! 1) =
⇥
cos2 (⇡↵/�) + sin2 (⇡↵/�) e�2⇢�x

⇤2
.

(46)
(Why is it a complete square?) The correlation
length in the asymptotic state is thus ⇠as = 2⇢. The
large separation and large time limits do not commute
because for t � �x, unlike for �x � t, the two points
become entangled by the kinks belonging to a single pair
and passing through one of the two points each.

3. Asymptotic steady state

Finally, we discuss the correlation function in the
asymptotic steady state. The asymptotic expressions of
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FIG. 3: Autocorrelation function for di↵erent values of t
as a function of t0/⌧ , where ⌧ is defined in Eq. (19). The

decay is exponential for t = 0 and di↵usive
⇠ 1/

p|t0 � t| for all t > 0.

is independent of the time after the quench. This is true
also for more general initial states having pairs with non-

zero total charge, as can be seen from Eq. (29). This
instant relaxation might be an artefact of the semiclassi-
cal approximation. However, the calculation for ↵ = �/2
is equivalent to that in the Ising field theory which can
be mapped to free fermions, and in such systems simi-
lar behavior has already been seen. In Ref. [47] the exact
density-density correlation function was obtained analyt-
ically after quenching the contact interaction strength
of a non-relativistic gas of bosons from zero to infinity,
exploiting the mapping between the infinitely repulsive
Bose gas (Tonks–Girardeau gas) and free fermions. The
autocorrelation function was shown to be exactly time-
independent. Similar behavior was found for relativistic
free field theories in a di↵erent situation, after connecting
two semi-infinite systems thermalized at di↵erent tem-
peratures [71]. Thus in the case of the Ising model, the
time independence of the spin-spin autocorrelation func-
tion found in the semiclassical approach can turn out to
be an exact result.

2. Equal time two-point function

Let us turn now to the relaxation of the equal time cor-
relation function. The Q functions for t = t

0 are given in
Eqs. (A10). Since QA = 0, the �-integral in Eq. (37) can
easily be evaluated and the correlation function becomes

C̄↵(�x; t, t)

= cos4 (⇡↵/�) + sin4 (⇡↵/�) e�4⇢�x+4QD + 2 sin2 (⇡↵/�) cos2 (⇡↵/�)
h
e

QD�2⇢�x + e

�t/⌧ (1� e

�QD ])
i
, (43)

where

QD = ⇢

Z ṽ

0
dv(�x� 2vt)f(v) . (44)

It can easily be shown that for �x = 0 (QD = 0) we
regain C̄↵(0; t, t) = 1.

The correlation function is plotted in Fig. 4. At any
finite t > 0, as �x ! 1 it exponentially approaches a
constant given by

C̄↵(�x ! 1; t, t) =
h
cos2 (⇡↵/�) + sin2 (⇡↵/�) e�t/⌧

i2
.

(45)
This is the square of the expectation value at time t (c.f.
Eq. (18)), so the cluster decomposition property holds
for all times after the quench. The connected correlation
function is thus exponential ⇠ e

�⇢�x with correlation
length given by the density of kink pairs.

We get a di↵erent result if we take the t ! 1 limit
first, corresponding to the asymptotic steady state for
finite separation:

C̄↵(�x; t ! 1) =
⇥
cos2 (⇡↵/�) + sin2 (⇡↵/�) e�2⇢�x

⇤2
.

(46)
(Why is it a complete square?) The correlation
length in the asymptotic state is thus ⇠as = 2⇢. The
large separation and large time limits do not commute
because for t � �x, unlike for �x � t, the two points
become entangled by the kinks belonging to a single pair
and passing through one of the two points each.

3. Asymptotic steady state

Finally, we discuss the correlation function in the
asymptotic steady state. The asymptotic expressions of
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FIG. 3: Autocorrelation function for di↵erent values of t
as a function of t0/⌧ , where ⌧ is defined in Eq. (19). The

decay is exponential for t = 0 and di↵usive
⇠ 1/

p|t0 � t| for all t > 0.

is independent of the time after the quench. This is true
also for more general initial states having pairs with non-

zero total charge, as can be seen from Eq. (29). This
instant relaxation might be an artefact of the semiclassi-
cal approximation. However, the calculation for ↵ = �/2
is equivalent to that in the Ising field theory which can
be mapped to free fermions, and in such systems simi-
lar behavior has already been seen. In Ref. [47] the exact
density-density correlation function was obtained analyt-
ically after quenching the contact interaction strength
of a non-relativistic gas of bosons from zero to infinity,
exploiting the mapping between the infinitely repulsive
Bose gas (Tonks–Girardeau gas) and free fermions. The
autocorrelation function was shown to be exactly time-
independent. Similar behavior was found for relativistic
free field theories in a di↵erent situation, after connecting
two semi-infinite systems thermalized at di↵erent tem-
peratures [71]. Thus in the case of the Ising model, the
time independence of the spin-spin autocorrelation func-
tion found in the semiclassical approach can turn out to
be an exact result.

2. Equal time two-point function

Let us turn now to the relaxation of the equal time cor-
relation function. The Q functions for t = t

0 are given in
Eqs. (A10). Since QA = 0, the �-integral in Eq. (37) can
easily be evaluated and the correlation function becomes

C̄↵(�x; t, t)

= cos4 (⇡↵/�) + sin4 (⇡↵/�) e�4⇢�x+4QD + 2 sin2 (⇡↵/�) cos2 (⇡↵/�)
h
e

QD�2⇢�x + e

�t/⌧ (1� e

�QD ])
i
, (43)

where

QD = ⇢

Z ṽ

0
dv(�x� 2vt)f(v) . (44)

It can easily be shown that for �x = 0 (QD = 0) we
regain C̄↵(0; t, t) = 1.
The correlation function is plotted in Fig. 4. At any

finite t > 0, as �x ! 1 it exponentially approaches a
constant given by

C̄↵(�x ! 1; t, t) =
h
cos2 (⇡↵/�) + sin2 (⇡↵/�) e�t/⌧

i2
.

(45)
This is the square of the expectation value at time t (c.f.
Eq. (18)), so the cluster decomposition property holds
for all times after the quench. The connected correlation
function is thus exponential ⇠ e

�⇢�x with correlation
length given by the density of kink pairs.

We get a di↵erent result if we take the t ! 1 limit
first, corresponding to the asymptotic steady state for
finite separation:

C̄↵(�x; t ! 1) =
⇥
cos2 (⇡↵/�) + sin2 (⇡↵/�) e�2⇢�x

⇤2
.

(46)
(Why is it a complete square?) The correlation
length in the asymptotic state is thus ⇠as = 2⇢. The
large separation and large time limits do not commute
because for t � �x, unlike for �x � t, the two points
become entangled by the kinks belonging to a single pair
and passing through one of the two points each.

3. Asymptotic steady state

Finally, we discuss the correlation function in the
asymptotic steady state. The asymptotic expressions of
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FIG. 3: Autocorrelation function for di↵erent values of t
as a function of t0/⌧ , where ⌧ is defined in Eq. (19). The

decay is exponential for t = 0 and di↵usive
⇠ 1/

p|t0 � t| for all t > 0.

is independent of the time after the quench. This is true
also for more general initial states having pairs with non-

zero total charge, as can be seen from Eq. (29). This
instant relaxation might be an artefact of the semiclassi-
cal approximation. However, the calculation for ↵ = �/2
is equivalent to that in the Ising field theory which can
be mapped to free fermions, and in such systems simi-
lar behavior has already been seen. In Ref. [47] the exact
density-density correlation function was obtained analyt-
ically after quenching the contact interaction strength
of a non-relativistic gas of bosons from zero to infinity,
exploiting the mapping between the infinitely repulsive
Bose gas (Tonks–Girardeau gas) and free fermions. The
autocorrelation function was shown to be exactly time-
independent. Similar behavior was found for relativistic
free field theories in a di↵erent situation, after connecting
two semi-infinite systems thermalized at di↵erent tem-
peratures [71]. Thus in the case of the Ising model, the
time independence of the spin-spin autocorrelation func-
tion found in the semiclassical approach can turn out to
be an exact result.

2. Equal time two-point function

Let us turn now to the relaxation of the equal time cor-
relation function. The Q functions for t = t

0 are given in
Eqs. (A10). Since QA = 0, the �-integral in Eq. (37) can
easily be evaluated and the correlation function becomes

C̄↵(�x; t, t)

= cos4 (⇡↵/�) + sin4 (⇡↵/�) e�4⇢�x+4QD + 2 sin2 (⇡↵/�) cos2 (⇡↵/�)
h
e

QD�2⇢�x + e

�t/⌧ (1� e

�QD ])
i
, (43)

where

QD = ⇢

Z ṽ

0
dv(�x� 2vt)f(v) . (44)

It can easily be shown that for �x = 0 (QD = 0) we
regain C̄↵(0; t, t) = 1.
The correlation function is plotted in Fig. 4. At any

finite t > 0, as �x ! 1 it exponentially approaches a
constant given by

C̄↵(�x ! 1; t, t) =
h
cos2 (⇡↵/�) + sin2 (⇡↵/�) e�t/⌧

i2
.

(45)
This is the square of the expectation value at time t (c.f.
Eq. (18)), so the cluster decomposition property holds
for all times after the quench. The connected correlation
function is thus exponential ⇠ e

�⇢�x with correlation
length given by the density of kink pairs.

We get a di↵erent result if we take the t ! 1 limit
first, corresponding to the asymptotic steady state for
finite separation:

C̄↵(�x; t ! 1) =
⇥
cos2 (⇡↵/�) + sin2 (⇡↵/�) e�2⇢�x

⇤2
.

(46)
(Why is it a complete square?) The correlation
length in the asymptotic state is thus ⇠as = 2⇢. The
large separation and large time limits do not commute
because for t � �x, unlike for �x � t, the two points
become entangled by the kinks belonging to a single pair
and passing through one of the two points each.

3. Asymptotic steady state

Finally, we discuss the correlation function in the
asymptotic steady state. The asymptotic expressions of
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FIG. 3: Autocorrelation function for di↵erent values of t
as a function of t0/⌧ , where ⌧ is defined in Eq. (19). The

decay is exponential for t = 0 and di↵usive
⇠ 1/

p|t0 � t| for all t > 0.

is independent of the time after the quench. This is true
also for more general initial states having pairs with non-

zero total charge, as can be seen from Eq. (29). This
instant relaxation might be an artefact of the semiclassi-
cal approximation. However, the calculation for ↵ = �/2
is equivalent to that in the Ising field theory which can
be mapped to free fermions, and in such systems simi-
lar behavior has already been seen. In Ref. [47] the exact
density-density correlation function was obtained analyt-
ically after quenching the contact interaction strength
of a non-relativistic gas of bosons from zero to infinity,
exploiting the mapping between the infinitely repulsive
Bose gas (Tonks–Girardeau gas) and free fermions. The
autocorrelation function was shown to be exactly time-
independent. Similar behavior was found for relativistic
free field theories in a di↵erent situation, after connecting
two semi-infinite systems thermalized at di↵erent tem-
peratures [71]. Thus in the case of the Ising model, the
time independence of the spin-spin autocorrelation func-
tion found in the semiclassical approach can turn out to
be an exact result.

2. Equal time two-point function

Let us turn now to the relaxation of the equal time cor-
relation function. The Q functions for t = t

0 are given in
Eqs. (A10). Since QA = 0, the �-integral in Eq. (37) can
easily be evaluated and the correlation function becomes

C̄↵(�x; t, t)

= cos4 (⇡↵/�) + sin4 (⇡↵/�) e�4⇢�x+4QD + 2 sin2 (⇡↵/�) cos2 (⇡↵/�)
h
e

QD�2⇢�x + e

�t/⌧ (1� e

�QD ])
i
, (43)

where

QD = ⇢

Z ṽ

0
dv(�x� 2vt)f(v) . (44)

It can easily be shown that for �x = 0 (QD = 0) we
regain C̄↵(0; t, t) = 1.

The correlation function is plotted in Fig. 4. At any
finite t > 0, as �x ! 1 it exponentially approaches a
constant given by

C̄↵(�x ! 1; t, t) =
h
cos2 (⇡↵/�) + sin2 (⇡↵/�) e�t/⌧

i2
.

(45)
This is the square of the expectation value at time t (c.f.
Eq. (18)), so the cluster decomposition property holds
for all times after the quench. The connected correlation
function is thus exponential ⇠ e

�⇢�x with correlation
length given by the density of kink pairs.

We get a di↵erent result if we take the t ! 1 limit
first, corresponding to the asymptotic steady state for
finite separation:

C̄↵(�x; t ! 1) =
⇥
cos2 (⇡↵/�) + sin2 (⇡↵/�) e�2⇢�x

⇤2
.

(46)
(Why is it a complete square?) The correlation
length in the asymptotic state is thus ⇠as = 2⇢. The
large separation and large time limits do not commute
because for t � �x, unlike for �x � t, the two points
become entangled by the kinks belonging to a single pair
and passing through one of the two points each.

3. Asymptotic steady state

Finally, we discuss the correlation function in the
asymptotic steady state. The asymptotic expressions of

Equal!>me!correla>ons!
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FIG. 3: Autocorrelation function for di↵erent values of t
as a function of t0/⌧ , where ⌧ is defined in Eq. (19). The

decay is exponential for t = 0 and di↵usive
⇠ 1/

p|t0 � t| for all t > 0.

is independent of the time after the quench. This is true
also for more general initial states having pairs with non-

zero total charge, as can be seen from Eq. (29). This
instant relaxation might be an artefact of the semiclassi-
cal approximation. However, the calculation for ↵ = �/2
is equivalent to that in the Ising field theory which can
be mapped to free fermions, and in such systems simi-
lar behavior has already been seen. In Ref. [47] the exact
density-density correlation function was obtained analyt-
ically after quenching the contact interaction strength
of a non-relativistic gas of bosons from zero to infinity,
exploiting the mapping between the infinitely repulsive
Bose gas (Tonks–Girardeau gas) and free fermions. The
autocorrelation function was shown to be exactly time-
independent. Similar behavior was found for relativistic
free field theories in a di↵erent situation, after connecting
two semi-infinite systems thermalized at di↵erent tem-
peratures [71]. Thus in the case of the Ising model, the
time independence of the spin-spin autocorrelation func-
tion found in the semiclassical approach can turn out to
be an exact result.

2. Equal time two-point function

Let us turn now to the relaxation of the equal time cor-
relation function. The Q functions for t = t

0 are given in
Eqs. (A10). Since QA = 0, the �-integral in Eq. (37) can
easily be evaluated and the correlation function becomes

C̄↵(�x; t, t)

= cos4 (⇡↵/�) + sin4 (⇡↵/�) e�4⇢�x+4QD + 2 sin2 (⇡↵/�) cos2 (⇡↵/�)
h
e

QD�2⇢�x + e

�t/⌧ (1� e

�QD ])
i
, (43)

where

QD = ⇢

Z ṽ

0
dv(�x� 2vt)f(v) . (44)

It can easily be shown that for �x = 0 (QD = 0) we
regain C̄↵(0; t, t) = 1.

The correlation function is plotted in Fig. 4. At any
finite t > 0, as �x ! 1 it exponentially approaches a
constant given by

C̄↵(�x ! 1; t, t) =
h
cos2 (⇡↵/�) + sin2 (⇡↵/�) e�t/⌧

i2
.

(45)
This is the square of the expectation value at time t (c.f.
Eq. (18)), so the cluster decomposition property holds
for all times after the quench. The connected correlation
function is thus exponential ⇠ e

�⇢�x with correlation
length given by the density of kink pairs.

We get a di↵erent result if we take the t ! 1 limit
first, corresponding to the asymptotic steady state for
finite separation:

C̄↵(�x; t ! 1) =
⇥
cos2 (⇡↵/�) + sin2 (⇡↵/�) e�2⇢�x

⇤2
.

(46)
(Why is it a complete square?) The correlation
length in the asymptotic state is thus ⇠as = 2⇢. The
large separation and large time limits do not commute
because for t � �x, unlike for �x � t, the two points
become entangled by the kinks belonging to a single pair
and passing through one of the two points each.

3. Asymptotic steady state

Finally, we discuss the correlation function in the
asymptotic steady state. The asymptotic expressions of

ExponenEal#decay...#

with!

Local correlations 

9

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20

t’ /  τ

0

0.2

0.4

0.6

0.8

1

t / τ = 0

t / τ = 1

t / τ = 3

t / τ = 8

C
(0

, 
t,

 t
 ’

)

C
4

C
 2

FIG. 3: Autocorrelation function for di↵erent values of t
as a function of t0/⌧ , where ⌧ is defined in Eq. (19). The

decay is exponential for t = 0 and di↵usive
⇠ 1/

p|t0 � t| for all t > 0.

is independent of the time after the quench. This is true
also for more general initial states having pairs with non-

zero total charge, as can be seen from Eq. (29). This
instant relaxation might be an artefact of the semiclassi-
cal approximation. However, the calculation for ↵ = �/2
is equivalent to that in the Ising field theory which can
be mapped to free fermions, and in such systems simi-
lar behavior has already been seen. In Ref. [47] the exact
density-density correlation function was obtained analyt-
ically after quenching the contact interaction strength
of a non-relativistic gas of bosons from zero to infinity,
exploiting the mapping between the infinitely repulsive
Bose gas (Tonks–Girardeau gas) and free fermions. The
autocorrelation function was shown to be exactly time-
independent. Similar behavior was found for relativistic
free field theories in a di↵erent situation, after connecting
two semi-infinite systems thermalized at di↵erent tem-
peratures [71]. Thus in the case of the Ising model, the
time independence of the spin-spin autocorrelation func-
tion found in the semiclassical approach can turn out to
be an exact result.

2. Equal time two-point function

Let us turn now to the relaxation of the equal time cor-
relation function. The Q functions for t = t

0 are given in
Eqs. (A10). Since QA = 0, the �-integral in Eq. (37) can
easily be evaluated and the correlation function becomes

C̄↵(�x; t, t)

= cos4 (⇡↵/�) + sin4 (⇡↵/�) e�4⇢�x+4QD + 2 sin2 (⇡↵/�) cos2 (⇡↵/�)
h
e

QD�2⇢�x + e

�t/⌧ (1� e

�QD ])
i
, (43)

where

QD = ⇢

Z ṽ

0
dv(�x� 2vt)f(v) . (44)

It can easily be shown that for �x = 0 (QD = 0) we
regain C̄↵(0; t, t) = 1.
The correlation function is plotted in Fig. 4. At any

finite t > 0, as �x ! 1 it exponentially approaches a
constant given by

C̄↵(�x ! 1; t, t) =
h
cos2 (⇡↵/�) + sin2 (⇡↵/�) e�t/⌧

i2
.

(45)
This is the square of the expectation value at time t (c.f.
Eq. (18)), so the cluster decomposition property holds
for all times after the quench. The connected correlation
function is thus exponential ⇠ e

�⇢�x with correlation
length given by the density of kink pairs.

We get a di↵erent result if we take the t ! 1 limit
first, corresponding to the asymptotic steady state for
finite separation:

C̄↵(�x; t ! 1) =
⇥
cos2 (⇡↵/�) + sin2 (⇡↵/�) e�2⇢�x

⇤2
.

(46)
(Why is it a complete square?) The correlation
length in the asymptotic state is thus ⇠as = 2⇢. The
large separation and large time limits do not commute
because for t � �x, unlike for �x � t, the two points
become entangled by the kinks belonging to a single pair
and passing through one of the two points each.

3. Asymptotic steady state

Finally, we discuss the correlation function in the
asymptotic steady state. The asymptotic expressions of

Local!correla>ons:!!
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Going through the steps made for C1 we arrive at

C2 = 2 sin2 (⇡↵/�) cos2 (⇡↵/�)

Z ⇡

�⇡

d�

2⇡
e

(ei��1)QR+(e2i��1)QD+(e�i��1)QA

⇣
e

(ei��1)QL � e

�(ei�+1)QL�2QI

⌘
. (36)

The total result for the correlator normalized by its vacuum value is then

C̄↵(x, x
0; t, t0) =

cos4 (⇡↵/�) + sin4 (⇡↵/�) e�2QR�2QL�2QA + sin2 (⇡↵/�) cos2 (⇡↵/�) e�2QI (e�2QL + e

�2QR�2QA)

+ 2 sin2 (⇡↵/�) cos2 (⇡↵/�) e�(QL+QR+QD+QA)

Z ⇡

�⇡

d�

2⇡
e

QRei�+QDe2i�+QAe�i�
⇣
e

QLei� � e

�QLei��2QI

⌘
. (37)

Note that expanding in ↵ to second order and di↵erentiating with respect to x and x

0 yields the topological charge
density correlation function.

C. Discussion of the result

In this section we analyze the general result in Eq.
(37) by examining its behavior for various special physi-
cal cases and limits. After discussing special values of ↵,
we analyze the autocorrelation function, the equal time
correlation function, and the asymptotic dynamic two-
point functions for late times.

First we note that setting ↵ = �/2 + k⇡ Eq. (37) sim-
plifies to

C̄�/2(x, x
0; t, t0) = e

�2QR�2QL�2QA
, (38)

and we recover the result (28) upon noting that Q =

QR +QL +QA where Q was defined in Eq. (27). For the
correlations with ↵ = � + k⇡ the semiclassical calcula-
tion gives C̄�(x, x0; t, t0) = 1, similarly to the expectation
value.

1. Autocorrelation function

The autocorrelation function is obtained by setting x =
x

0
. Using the special values of the Q functions in this case

listed in Eq. (A8) of the Appendix, the autocorrelation
function is

C̄↵(0; t, t
0) = cos4 (⇡↵/�) + sin4 (⇡↵/�) e��t/⌧

+ sin2 (⇡↵/�) cos2 (⇡↵/�)


e

�t/⌧ (1 + e

��t/⌧ ) + 2e��t/(2⌧)(1� e

�t/⌧ )I0

✓
�t

2⌧

◆�
, (39)

where �t = t

0 � t and ⌧ is the characteristic relaxation
time of the expectation value found in Eq. (19). It is
easy to check that as �t ! 0 we recover the trivial result
C̄↵(0; t, t) = 1.

The autocorrelation function is shown in Fig. 3 What

is f(v)?. The most interesting feature of the result is its
behavior for large time separation. As t

0 ! 1 while t

is being kept fixed, using the asymptotic behavior of the
Bessel function we find

C̄↵(0; t, t
0 ! 1) = cos4 (⇡↵/�)

+sin2 (⇡↵/�) cos2 (⇡↵/�)

"
e

�t/⌧ + 2(1� e

�t/⌧ )
1p

⇡�t/⌧

#
.

(40)

As �t ! 1, the autocorrelation function approaches a
t-dependent non-zero constant which equals the product
of expectation values given in Eq. (18) at times t and
t +�t ! 1, as it should (the normalization factor also
factorizes, C↵(0; t, t0)vac = G2

↵.). For any t > 0 the late
time behavior is di↵usive. This is similar to the behav-
ior found in the semiclassical approximation for thermal
equilibrium [62–64]. Interestingly, the di↵usive term van-
ishes only for t = 0 in which case we regain the exponen-
tial behavior found for the expectation value:

C̄↵(0; 0, t
0) = cos2 (⇡↵/�) + sin2 (⇡↵/�) e�t0/⌧

. (41)

It is interesting to note that for ↵ = �/2 + k⇡,

C̄�/2(0; t, t
0) = e

��t/⌧ (42)
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(37) by examining its behavior for various special physi-
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time of the expectation value found in Eq. (19). It is
easy to check that as �t ! 0 we recover the trivial result
C̄↵(0; t, t) = 1.

The autocorrelation function is shown in Fig. 3 What

is f(v)?. The most interesting feature of the result is its
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of expectation values given in Eq. (18) at times t and
t +�t ! 1, as it should (the normalization factor also
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ior found in the semiclassical approximation for thermal
equilibrium [62–64]. Interestingly, the di↵usive term van-
ishes only for t = 0 in which case we regain the exponen-
tial behavior found for the expectation value:

C̄↵(0; 0, t
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Conclusions II 

•  universal!decay!

•  “Prethermalized!state”,!nonJuniversal!SJmatrix!needed...!

lim
t→∞

eiαΦ(x,t ) ≠ 0 !?

•  Diffusive!phase!correla>ons!

•  Universal!semiclassical!correla>on!func>ons!in!sineJGordon!
model!

•  Applicable!for!nonJintegrable!systems!!
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Addition 

Our!works!on!quantum!quenches!and!work!sta>s>cs!in!Luhnger!
liquids!

!
Loschmidt  echo in a Qubit-Coupled Luttinger Liquid !
[Phys. Rev. Lett. 111, 046402 (2013)]!
!
 Work statistics in a quenched Luttinger liquid !
[Phys. Rev. B 86, 161109(R) (2012)] !
!
Crossover from Adiabatic to Sudden Interaction Quench in a Luttinger Liquid !
[Phys. Rev. Lett. 106, 156406 (2011)]!
!


