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FIG. 1. (Color online) Schematic of the low-energy description,
which captures contributions to the spin, Ms , and orbital, Mo,
components of the magnetization that stem from the Dirac electrons.

inconsequential here, but would play a role if we restored the
spatiotemporal structure of n(r,t)].

The total equilibrium out-of-plane magnetization can be
calculated thermodynamically, as follows:

M = −∂B"(µ,T ,B), (4)

where " is the (grand-canonical) thermodynamic potential of
electrons at chemical potential µ and ambient temperature T ,
per unit area. To this end, we recall the Landau-level spectrum
of the gapped Dirac electrons subjected to a magnetic field [8]:

ϵ0 = −sgn(B)$, ϵn = sgn(n)
√

2(!v/l)2|n| + $2 , (5)

where l ≡
√

!c/e|B| is the magnetic length. n ∈ Z is the
Landau-level index (n > 0 corresponding to the particle- and
n < 0 holelike states). The degeneracy (per unit area) of each
Landau level is given by N = 1/2π l2. (See Fig. 1 for a
schematic of the relevant electronic structure.) This gives for
the thermodynamic potential:

"(B) = −kBTN
∑

n

fn = −kBT |B|
∑

n

fn(B)/φ, (6)

where fn ≡ ln[1 + eβ(µ−ϵn)], β ≡ (kBT )−1, and φ ≡ 2π!c/e
is a magnetic flux quantum. When B = 0,

M = lim
B→0

"(−B) − "(B)
2B

= kBT

2φ
ln

1 + eβ(µ+$0)

1 + eβ(µ−$0)

− sgn($0)
g

8mφ

$2
0

v2

∫ yg

−yg

dy/ε

1 + eβ(|$0|ε−µ)
,

(7)

where ε ≡ sgn(y)
√

1 + |y|, $0 ≡ J⊥nz, and yg ∼ (ϵg/$0)2

is the cutoff for this low-energy theory due to the bulk gap
ϵg ∼ !v/a (a being the cutoff length scale) of the TI. M →
Mo + Ms consists of two contributions: orbital (Landau-like)
magnetization Mo, which is governed by the zeroth Landau
level, and spin (Pauli-like) magnetization Ms ∝ g, which is
determined by all the other (particle- and holelike) Landau
levels. The latter corresponds to the spin response induced by
the Zeeman term in the Hamiltonian (1), which could also
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FIG. 2. Orbital magnetization, Eq. (9), is shown by black curves:
Solid, dashed, and dotted corresponding to temperatures kBT /$0 =
0.01, 1, and 10, respectively, setting ζ = 0. The grey curves (with
the dotted one essentially overlapping with the black curve) show
derivatives χ$, Eq. (17). The shaded areas are the derivatives χµ,
Eq. (18). Note that χµ vanishes in the extreme limits of both T → 0
and T → ∞ for |µ/$0| > 1 [3].

be calculated directly, in the absence of Landau levels. When
ϵg ≫ ϵ̃, where ϵ̃ = max(kBT ,|$0|,|µ|),

Ms ∼ $0
g

4mφ

ϵg

v2
. (8)

The orbital contribution (in the absence of B) is [8]

Mo = kBT

2φ
ln

1 + eβ(µ+$0)

1 + eβ(µ−$0)
+ (ζ − 1)

$0

2φ

T →0→ $0

2φ

⎛

⎝ζ +

⎧
⎨

⎩

1, µ > |$0|
µ/|$0|, |µ| < |$0|

−1, µ < −|$0|

⎞

⎠ , (9)

where we have phenomenologically added a term ∝ (ζ − 1)
that could stem from energy levels ϵ ! −ϵg , which are beyond
our effective theory. (Since, when ϵ̃ ≪ ϵg , this contribution
should not depend on µ and can only be weakly depen-
dent on $0, we expanded it to linear order in $0.) The
total magnetization M(B → 0) ∝ $0, so that, in particular,
M(−$0) = −M($0), as should be according to the time-
reversal symmetry. Under an additional assumption of the
orbital particle-hole symmetry, "(µ,B) = "(−µ, − B), we
would have Mo(µ) = −Mo(−µ), which would imply that
ζ = 0. In Fig. 2, we plot the orbital magnetization (9), as a
function of chemical potential, at different temperatures.

At first sight, the contribution ∝ µ in Eq. (9) may appear
surprising. Indeed, why would a magnetization be modulated
by the chemical potential placed inside the gap? This is
reconciled by the half-quantized quantum Hall effect and the
associated gapless chiral modes at the sample boundary in
the xy plane (which, together with the states associated with
the opposite TI surface form fully quantized edge states),
as follows. When |µ/$0| < 1, ∂µM0 = sgn($0)/2φ, which
means that ∂ϕI = gQ/2, where Mo → I/c, the charge current
at the sample boundary, and gQ ≡ e2/2π! is the quantum of
conductance. (Together with the opposite surface of the 3D
TI in the z direction, this would engender a fully quantized
integer quantum Hall effect.)
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Inducing a Magnetic Monopole with
Topological Surface States
Xiao-Liang Qi,1 Rundong Li,1 Jiadong Zang,2 Shou-Cheng Zhang1*

Existence of the magnetic monopole is compatible with the fundamental laws of nature;
however, this elusive particle has yet to be detected experimentally. We show theoretically that an
electric charge near a topological surface state induces an image magnetic monopole charge due
to the topological magneto-electric effect. The magnetic field generated by the image magnetic
monopole may be experimentally measured, and the inverse square law of the field dependence
can be determined quantitatively. We propose that this effect can be used to experimentally realize
a gas of quantum particles carrying fractional statistics, consisting of the bound states of the
electric charge and the image magnetic monopole charge.

The electromagnetic response of a conven-
tional insulator is described by a dielectric
constant e and a magnetic permeability m.

An electric field induces an electric polarization,
whereas a magnetic field induces a magnetic
polarization. As both the electric field E(x) and
themagnetic inductionB(x) are well defined inside
an insulator, the linear response of a convention-
al insulator can be fully described by the effective

actionS0 ¼ 1
8p ∫d

3xdt eE2− 1
mB

2
! "

, where d3xdt is

the volume element of space and time. However,
in general, another possible term is allowed in the
effective action, which is quadratic in the elec-
tromagnetic field, contains the same number of
derivatives of the electromagnetic potential, and
is rotationally invariant; this term is given by
Sq ¼ q

2p

# $

a
2p

# $

∫d3xdtE⋅B. Here, a ¼ e2
ℏc (where ħ

is Planck’s constant h divided by 2p and c is the
speed of light) is the fine-structure constant, and q
can be viewed as a phenomenological parameter
in the sense of the effective Landau-Ginzburg
theory. This term describes the magneto-electric
effect (1), where an electric field can induce a
magnetic polarization, and a magnetic field can
induce an electric polarization.

Unlike conventional terms in the Landau-
Ginzburg effective actions, the integrand in Sq
is a total derivative term, when E(x) and B(x)
are expressed in terms of the electromagnetic
vector potential (where ∂m denotes the partial
derivative; m, n, r, and t denote the spacetime
coordinates; Fmn is the electromagnetic field
tensor; and Am is the electromagnetic potential)

Sq ¼
q
2p

a
16p

∫d3xdtemnrtFmnFrt

¼ q
2p

a
4p

∫d3xdt∂mðemnrsAn∂rAtÞ

Furthermore, when a periodic boundary condi-
tion is imposed in both the spatial and temporal
directions, the integral of such a total derivative
term is always quantized to be an integer; i.e.,
Sq
ℏ ¼ qn (where n is an integer). Therefore, the
partition function and all physically measurable
quantities are invariant when the q parameter is
shifted by 2p times an integer (2). Under time-
reversal symmetry, eiqn is transformed into e–iqn

(here, i2 = –1). Therefore, all time-reversal in-
variant insulators fall into two general classes,
described by either q = 0 or q = p (3). These two
time-reversal invariant classes are disconnected,
and they can only be connected continuously by
time-reversal breaking perturbations. This classi-
fication of time-reversal invariant insulators in
terms of the two possible values of the q
parameter is generally valid for insulators with
arbitrary interactions (3). The effective action
contains the complete description of the
electromagnetic response of topological insula-
tors. Topological insulators have an energy gap in
the bulk, but gapless surface states protected by
the time-reversal symmetry. We have shown (3)

that such a general definition of a topological
insulator reduces to the Z2 topological insulators
described in (4–6 ) for non-interacting band
insulators; this finding is a three-dimensional
(3D) generalization of the quantum spin Hall
insulator in two dimensions (7–10). For generic
band insulators, the parameter q has a micro-
scopic expression of the momentum space
Chern-Simons form (3, 11). Recently, experi-
mental evidence of the topologically nontrivial
surface states has been observed in Bi1−xSbx alloy
(12), which supports the theoretical prediction
that Bi1−xSbx is a Z2 topological insulator (4).

With periodic temporal and spatial boundary
conditions, the partition function is periodic in q
under the 2p shift, and the system is invariant
under the time-reversal symmetry at q = 0 and
q = p. However, with open boundary conditions,
the partition function is no longer periodic in q,
and time-reversal symmetry is generally broken
(but only on the boundary), even when q = (2n +
1)p. Our work in (3) gives the following physical
interpretation: Time-reversal invariant topologi-
cal insulators have a bulk energy gap but have
gapless excitations with an odd number of Dirac
cones on the surface. When the surface is coated
with a thin magnetic film, time-reversal sym-
metry is broken, and an energy gap also opens up
at the surface. In this case, the low-energy theory
is completely determined by the surface term in
Eq. 1. As the surface term is a Chern-Simons
term, it describes the quantum Hall effect on
the surface. From the general Chern-Simons-
Landau-Ginzburg theory of the quantum Hall
effect (13), we know that the coefficient q =
(2n+1)p gives a quantized Hall conductance of
sxy ¼ nþ 1

2

# $

e2
h . This quantized Hall effect on

the surface is the physical origin behind the
topological magneto-electric (TME) effect.
Under an applied electric field, a quantized
Hall current is induced on the surface, which in
turn generates a magnetic polarization and vice
versa.
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Fig. 1. Illustration of the image charge
and monopole of a point-like electric
charge. The lower-half space is occupied
by a topological insulator (TI) with di-
electric constant e2 and magnetic perme-
ability m2. The upper-half space is occupied
by a topologically trivial insulator (or vac-
uum) with dielectric constant e1 and mag-
netic permeability m1. A point electric
charge q is located at (0, 0, d ). When seen
from the lower-half space, the image
electric charge q1 and magnetic monopole
g1 are at (0, 0, d ); when seen from the
upper-half space, the image electric
charge q2 and magnetic monopole g2
are at (0, 0, −d ). The red solid lines
represent the electric field lines, and blue
solid lines represent magnetic field lines.
(Inset) Top-down view showing the in-plane component of the electric field at the surface (red arrows)
and the circulating surface current (black circles).

(1)
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Spin Hall phenomenology of magnetic dynamics

Yaroslav Tserkovnyak and Scott A. Bender
Department of Physics and Astronomy, University of California, Los Angeles, California 90095, USA

(Received 24 May 2014; revised manuscript received 8 July 2014; published 22 July 2014)

We study the role of spin-orbit interactions in the coupled magnetoelectric dynamics of a ferromagnetic film
coated with an electrical conductor. While the main thrust of this work is phenomenological, several popular
simple models are considered microscopically in some detail, including Rashba and Dirac two-dimensional
electron gases coupled to a magnetic insulator, as well as a diffusive spin Hall system. We focus on
the long-wavelength magnetic dynamics that experiences current-induced torques and produces fictitious
electromotive forces. Our phenomenology provides a suitable framework for analyzing experiments on
current-induced magnetic dynamics and reciprocal charge pumping, including the effects of magnetoresistance
and Gilbert-damping anisotropies, without a need to resort to any microscopic considerations or modeling.
Finally, some remarks are made regarding the interplay of spin-orbit interactions and magnetic textures.

DOI: 10.1103/PhysRevB.90.014428 PACS number(s): 85.75.−d

I. INTRODUCTION

Several new directions of spintronic research have opened
and progressed rapidly in recent years. Much enthusiasm is
bolstered by the opportunities to initiate and detect spin-
transfer torques in magnetic metals [1] and insulators [2],
which could be accomplished by variants of the spin Hall
effect [3], along with the reciprocal electromotive forces
induced by magnetic dynamics. The spin Hall effect stands
for a spin current generated by a transverse applied charge
current, in the presence of spin-orbit interaction. From the
perspective of angular momentum conservation, the spin Hall
effect allows angular momentum to be leveraged from the
stationary crystal lattice to the magnetic dynamics. A range of
nonmagnetic materials from metals to topological insulators
have been demonstrated to exhibit strong spin-orbit coupling,
thus allowing for efficient current-induced torques.

Focusing on quasi-two-dimensional (2D) geometries, we
can generally think of the underlying spin Hall phenomena
as an out-of-equilibrium magnetoelectric effect that couples
planar charge currents with collective magnetization dynam-
ics. In typical practical cases, the relevant system is a bilayer
heterostructure, which consists of a conducting layer with
strong spin-orbit coupling and ferromagnetic layer with well-
formed magnetic order. In this case, the current-induced spin
torque reflects a spin angular momentum flux normal to the
plane, which explains the spin Hall terminology.

The microscopic interplay of spin-orbit interaction and
magnetism at the interface translates into a macroscopic
coupling between charge currents and magnetic dynamics. A
general phenomenology applicable to a variety of disparate
heterostructures can be inferred by considering a course-
grained 2D system, which both conducts and has magnetic
order as well as lacks inversion symmetry (or else the
pseudovectorial magnetization would not couple linearly to
the vectorial current density). In a bilayer heterostructure, the
latter is naturally provided by the broken reflection symmetry
with respect to its plane.

II. GENERAL PHENOMENOLOGY

Let us specifically consider a bilayer heterostructure with
one layer magnetic and one conducting, as sketched in Fig. 1.

y

z

j

ṅ
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H

aN

aF

x

F

N

FIG. 1. (Color online) Heterostructure consisting of a magnetic
top layer and conducting underlayer. The charge current j induces a
torque τ acting on the magnetic dynamics, which quantifies the spin
angular-momentum transfer in the z direction. This can be thought
of as a spin current js entering the ferromagnet at the interface.
Reciprocally, magnetic dynamics ṅ induces a motive force ϵ acting
on the itinerant electrons in the conductor.

The nonmagnetic layer can be tailored to enhance spin-orbit
coupling effects in and out of equilibrium. Phenomenolog-
ically, we have a quasi-2D system along the xy plane,
which will for simplicity be taken to be isotropic and mirror
symmetric in plane while breaking reflection symmetry along
the z axis. In other words, the structural symmetry is assumed
to be that of a Rashba 2D electron gas (although microscopic
details could be more complex), subject to a spontaneous
time-reversal symmetry breaking due to the magnetic order.
Common examples of such heterostructures include a thin
transition-metal [1] or magnetic-insulator [2] film capped by
a heavy metal, or a layer of 3D topological insulator doped on
one side with magnetic impurities [4].

The course-grained hydrodynamic variables used to de-
scribe our system are the three-component collective spin
density (per unit area) s(r,t) = sn(r,t) ≡ (snx,sny,snz) and
the two-component 2D current density (per unit length)
j(r,t) ≡ (jx,jy) in the xy plane. Considering fully saturated
magnetic state well below the Curie temperature, we treat the
spin density as a directional variable, such that its magnitude

1098-0121/2014/90(1)/014428(8) 014428-1 ©2014 American Physical Society
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0th Landau level

is still too small to be explained by the surface states
alone. However, the low-temperature transport exhibits
interesting 2D mesoscopic effects that are not com-
pletely understood !Checkelsky et al., 2009". Doping
Bi2Se3 with copper leads to a metallic state that shows
superconducting behavior #Fig. 17!b"$ below 3.8 K
!Wray et al., 2009; Hor, Williams, et al., 2010". This has
important ramifications for some of the devices pro-
posed in Sec. IV.

V. EXOTIC BROKEN SYMMETRY SURFACE PHASES

Now that the basic properties of topological insulators
have been established, we may ask what can be done
with them. In this section we argue that the unique prop-
erties of topological insulator surface and edge states are
most dramatic if an energy gap can be induced in them.
This can be done by breaking T symmetry with an exter-
nal magnetic field !Fu and Kane, 2007" or proximity to a
magnetic material !Qi, Hughes, and Zhang, 2008", by
breaking gauge symmetry due to proximity to a super-
conductor !Fu and Kane, 2008", or by an excitonic insta-
bility of two coupled surfaces !Seradjeh, Moore, and
Franz, 2009". In this section we review the magnetic and
superconducting surface phases.

A. Quantum Hall effect and topological magnetoelectric effect

1. Surface quantum Hall effect

A perpendicular magnetic field will lead to Landau
levels in the surface electronic spectrum and the quan-
tum Hall effect. The Landau levels for Dirac electrons
are special, however, because a Landau level is guaran-
teed to exist at exactly zero energy !Jackiw, 1984". This
zero Landau level is particle-hole symmetric in the sense
that the Hall conductivity is equal and opposite when
the Landau level is full or empty. Since the Hall conduc-
tivity increases by e2 /h when the Fermi energy crosses a
Landau level the Hall conductivity is half integer quan-
tized !Zheng and Ando, 2002",

!xy = !n + 1/2"e2/h . !17"

This physics has been demonstrated in experiments on
graphene !Novoselov et al., 2005; Zhang et al., 2005".
However, there is an important difference. In graphene
Eq. !17" is multiplied by 4 due to the spin and valley
degeneracy of graphene’s Dirac points, so the observed
Hall conductivity is still integer quantized. At the sur-
face of the topological insulator there is only a single
Dirac point. Such a “fractional” integer quantized Hall
effect should be a cause for concern because the integer
quantized Hall effect is always associated with chiral
edge states, which can only be integer quantized. The
resolution is the mathematical fact that a surface cannot
have a boundary. In a slab geometry shown in Fig. 18!a",
the top and bottom surfaces are necessarily connected to
each other and will always be measured in parallel !Fu
and Kane, 2007", doubling the 1/2. The top and bottom

can share a single chiral edge state, which carries the
integer quantized Hall current.

A related surface quantum Hall effect, called the
anomalous quantum Hall effect, can be induced with the
proximity to a magnetic insulator. A thin magnetic film
on the surface of a topological insulator will give rise to
a local exchange field that lifts the Kramers degeneracy
at the surface Dirac points. This introduces a mass term
m into the Dirac equation #Eq. !16"$, as in Eq. !4". If the
EF is in this energy gap, there is a half integer quantized
Hall conductivity !xy=e2 /2h !Pankratov, 1987", as dis-
cussed in Sec. II.B.2. This can be probed in a transport
experiment by introducing a domain wall into the mag-
net. The sign of m depends on the direction of the mag-
netization. At an interface where m changes sign #Fig.
18!d"$ there will be a 1D chiral edge state, analogous to
unfolding the surface in Fig. 18!b".

2. Topological magnetoelectric effect and axion electrodynamics

The surface Hall conductivity can also be probed
without the edge states either by optical methods or by
measuring the magnetic field produced by surface cur-
rents. This leads to an intriguing topological magneto-
electric effect !Qi, Hughes, and Zhang, 2008; Essin,
Moore, and Vanderbilt, 2009". Imagine a cylindrical to-
pological insulator with magnetically gapped surface
states and an electric field E along its axis. The azi-
muthal surface Hall current !e2 /2h"%E% leads to a
magnetic-dipole moment associated with a magnetiza-
tion M="E, where the magnetoelectric polarizability is
given by "=e2 /2h.

A field theory for this magnetoelectric effect can be
developed by including a # term in the electromagnetic
Lagrangian, which has a form analogous to the theory of
axion electrodynamics that has been studied in particle
physics contexts !Wilczek, 1987",

0

1
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-1
-2

B

TI

M M

TI

(a)

(b)

(c)

(d)

=e2/2hσxy

=e2/2hσxy

E

E

FIG. 18. !Color online" Surface quantum Hall effect. !a" The
Dirac spectrum is replaced by Landau levels in an orbital mag-
netic field. !b" The top and bottom surfaces share a single chi-
ral fermion edge mode. !c" A thin magnetic film can induce an
energy gap at the surface. !d" A domain wall in the surface
magnetization exhibits a chiral fermion mode.
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is still too small to be explained by the surface states
alone. However, the low-temperature transport exhibits
interesting 2D mesoscopic effects that are not com-
pletely understood !Checkelsky et al., 2009". Doping
Bi2Se3 with copper leads to a metallic state that shows
superconducting behavior #Fig. 17!b"$ below 3.8 K
!Wray et al., 2009; Hor, Williams, et al., 2010". This has
important ramifications for some of the devices pro-
posed in Sec. IV.

V. EXOTIC BROKEN SYMMETRY SURFACE PHASES

Now that the basic properties of topological insulators
have been established, we may ask what can be done
with them. In this section we argue that the unique prop-
erties of topological insulator surface and edge states are
most dramatic if an energy gap can be induced in them.
This can be done by breaking T symmetry with an exter-
nal magnetic field !Fu and Kane, 2007" or proximity to a
magnetic material !Qi, Hughes, and Zhang, 2008", by
breaking gauge symmetry due to proximity to a super-
conductor !Fu and Kane, 2008", or by an excitonic insta-
bility of two coupled surfaces !Seradjeh, Moore, and
Franz, 2009". In this section we review the magnetic and
superconducting surface phases.

A. Quantum Hall effect and topological magnetoelectric effect

1. Surface quantum Hall effect

A perpendicular magnetic field will lead to Landau
levels in the surface electronic spectrum and the quan-
tum Hall effect. The Landau levels for Dirac electrons
are special, however, because a Landau level is guaran-
teed to exist at exactly zero energy !Jackiw, 1984". This
zero Landau level is particle-hole symmetric in the sense
that the Hall conductivity is equal and opposite when
the Landau level is full or empty. Since the Hall conduc-
tivity increases by e2 /h when the Fermi energy crosses a
Landau level the Hall conductivity is half integer quan-
tized !Zheng and Ando, 2002",

!xy = !n + 1/2"e2/h . !17"

This physics has been demonstrated in experiments on
graphene !Novoselov et al., 2005; Zhang et al., 2005".
However, there is an important difference. In graphene
Eq. !17" is multiplied by 4 due to the spin and valley
degeneracy of graphene’s Dirac points, so the observed
Hall conductivity is still integer quantized. At the sur-
face of the topological insulator there is only a single
Dirac point. Such a “fractional” integer quantized Hall
effect should be a cause for concern because the integer
quantized Hall effect is always associated with chiral
edge states, which can only be integer quantized. The
resolution is the mathematical fact that a surface cannot
have a boundary. In a slab geometry shown in Fig. 18!a",
the top and bottom surfaces are necessarily connected to
each other and will always be measured in parallel !Fu
and Kane, 2007", doubling the 1/2. The top and bottom

can share a single chiral edge state, which carries the
integer quantized Hall current.

A related surface quantum Hall effect, called the
anomalous quantum Hall effect, can be induced with the
proximity to a magnetic insulator. A thin magnetic film
on the surface of a topological insulator will give rise to
a local exchange field that lifts the Kramers degeneracy
at the surface Dirac points. This introduces a mass term
m into the Dirac equation #Eq. !16"$, as in Eq. !4". If the
EF is in this energy gap, there is a half integer quantized
Hall conductivity !xy=e2 /2h !Pankratov, 1987", as dis-
cussed in Sec. II.B.2. This can be probed in a transport
experiment by introducing a domain wall into the mag-
net. The sign of m depends on the direction of the mag-
netization. At an interface where m changes sign #Fig.
18!d"$ there will be a 1D chiral edge state, analogous to
unfolding the surface in Fig. 18!b".

2. Topological magnetoelectric effect and axion electrodynamics

The surface Hall conductivity can also be probed
without the edge states either by optical methods or by
measuring the magnetic field produced by surface cur-
rents. This leads to an intriguing topological magneto-
electric effect !Qi, Hughes, and Zhang, 2008; Essin,
Moore, and Vanderbilt, 2009". Imagine a cylindrical to-
pological insulator with magnetically gapped surface
states and an electric field E along its axis. The azi-
muthal surface Hall current !e2 /2h"%E% leads to a
magnetic-dipole moment associated with a magnetiza-
tion M="E, where the magnetoelectric polarizability is
given by "=e2 /2h.

A field theory for this magnetoelectric effect can be
developed by including a # term in the electromagnetic
Lagrangian, which has a form analogous to the theory of
axion electrodynamics that has been studied in particle
physics contexts !Wilczek, 1987",
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FIG. 18. !Color online" Surface quantum Hall effect. !a" The
Dirac spectrum is replaced by Landau levels in an orbital mag-
netic field. !b" The top and bottom surfaces share a single chi-
ral fermion edge mode. !c" A thin magnetic film can induce an
energy gap at the surface. !d" A domain wall in the surface
magnetization exhibits a chiral fermion mode.
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Topological magnetoelectric effect
Axion electrodynamics: �L = ✓E ·B

Wilczek, PRL (1987)

Inducing a Magnetic Monopole with
Topological Surface States
Xiao-Liang Qi,1 Rundong Li,1 Jiadong Zang,2 Shou-Cheng Zhang1*

Existence of the magnetic monopole is compatible with the fundamental laws of nature;
however, this elusive particle has yet to be detected experimentally. We show theoretically that an
electric charge near a topological surface state induces an image magnetic monopole charge due
to the topological magneto-electric effect. The magnetic field generated by the image magnetic
monopole may be experimentally measured, and the inverse square law of the field dependence
can be determined quantitatively. We propose that this effect can be used to experimentally realize
a gas of quantum particles carrying fractional statistics, consisting of the bound states of the
electric charge and the image magnetic monopole charge.

The electromagnetic response of a conven-
tional insulator is described by a dielectric
constant e and a magnetic permeability m.

An electric field induces an electric polarization,
whereas a magnetic field induces a magnetic
polarization. As both the electric field E(x) and
themagnetic inductionB(x) are well defined inside
an insulator, the linear response of a convention-
al insulator can be fully described by the effective

actionS0 ¼ 1
8p ∫d

3xdt eE2− 1
mB

2
! "

, where d3xdt is

the volume element of space and time. However,
in general, another possible term is allowed in the
effective action, which is quadratic in the elec-
tromagnetic field, contains the same number of
derivatives of the electromagnetic potential, and
is rotationally invariant; this term is given by
Sq ¼ q

2p

# $

a
2p

# $

∫d3xdtE⋅B. Here, a ¼ e2
ℏc (where ħ

is Planck’s constant h divided by 2p and c is the
speed of light) is the fine-structure constant, and q
can be viewed as a phenomenological parameter
in the sense of the effective Landau-Ginzburg
theory. This term describes the magneto-electric
effect (1), where an electric field can induce a
magnetic polarization, and a magnetic field can
induce an electric polarization.

Unlike conventional terms in the Landau-
Ginzburg effective actions, the integrand in Sq
is a total derivative term, when E(x) and B(x)
are expressed in terms of the electromagnetic
vector potential (where ∂m denotes the partial
derivative; m, n, r, and t denote the spacetime
coordinates; Fmn is the electromagnetic field
tensor; and Am is the electromagnetic potential)

Sq ¼
q
2p

a
16p

∫d3xdtemnrtFmnFrt

¼ q
2p

a
4p

∫d3xdt∂mðemnrsAn∂rAtÞ

Furthermore, when a periodic boundary condi-
tion is imposed in both the spatial and temporal
directions, the integral of such a total derivative
term is always quantized to be an integer; i.e.,
Sq
ℏ ¼ qn (where n is an integer). Therefore, the
partition function and all physically measurable
quantities are invariant when the q parameter is
shifted by 2p times an integer (2). Under time-
reversal symmetry, eiqn is transformed into e–iqn

(here, i2 = –1). Therefore, all time-reversal in-
variant insulators fall into two general classes,
described by either q = 0 or q = p (3). These two
time-reversal invariant classes are disconnected,
and they can only be connected continuously by
time-reversal breaking perturbations. This classi-
fication of time-reversal invariant insulators in
terms of the two possible values of the q
parameter is generally valid for insulators with
arbitrary interactions (3). The effective action
contains the complete description of the
electromagnetic response of topological insula-
tors. Topological insulators have an energy gap in
the bulk, but gapless surface states protected by
the time-reversal symmetry. We have shown (3)

that such a general definition of a topological
insulator reduces to the Z2 topological insulators
described in (4–6 ) for non-interacting band
insulators; this finding is a three-dimensional
(3D) generalization of the quantum spin Hall
insulator in two dimensions (7–10). For generic
band insulators, the parameter q has a micro-
scopic expression of the momentum space
Chern-Simons form (3, 11). Recently, experi-
mental evidence of the topologically nontrivial
surface states has been observed in Bi1−xSbx alloy
(12), which supports the theoretical prediction
that Bi1−xSbx is a Z2 topological insulator (4).

With periodic temporal and spatial boundary
conditions, the partition function is periodic in q
under the 2p shift, and the system is invariant
under the time-reversal symmetry at q = 0 and
q = p. However, with open boundary conditions,
the partition function is no longer periodic in q,
and time-reversal symmetry is generally broken
(but only on the boundary), even when q = (2n +
1)p. Our work in (3) gives the following physical
interpretation: Time-reversal invariant topologi-
cal insulators have a bulk energy gap but have
gapless excitations with an odd number of Dirac
cones on the surface. When the surface is coated
with a thin magnetic film, time-reversal sym-
metry is broken, and an energy gap also opens up
at the surface. In this case, the low-energy theory
is completely determined by the surface term in
Eq. 1. As the surface term is a Chern-Simons
term, it describes the quantum Hall effect on
the surface. From the general Chern-Simons-
Landau-Ginzburg theory of the quantum Hall
effect (13), we know that the coefficient q =
(2n+1)p gives a quantized Hall conductance of
sxy ¼ nþ 1

2

# $

e2
h . This quantized Hall effect on

the surface is the physical origin behind the
topological magneto-electric (TME) effect.
Under an applied electric field, a quantized
Hall current is induced on the surface, which in
turn generates a magnetic polarization and vice
versa.
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Fig. 1. Illustration of the image charge
and monopole of a point-like electric
charge. The lower-half space is occupied
by a topological insulator (TI) with di-
electric constant e2 and magnetic perme-
ability m2. The upper-half space is occupied
by a topologically trivial insulator (or vac-
uum) with dielectric constant e1 and mag-
netic permeability m1. A point electric
charge q is located at (0, 0, d ). When seen
from the lower-half space, the image
electric charge q1 and magnetic monopole
g1 are at (0, 0, d ); when seen from the
upper-half space, the image electric
charge q2 and magnetic monopole g2
are at (0, 0, −d ). The red solid lines
represent the electric field lines, and blue
solid lines represent magnetic field lines.
(Inset) Top-down view showing the in-plane component of the electric field at the surface (red arrows)
and the circulating surface current (black circles).

(1)
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Qi et al., Science (2009)
Pesin and MacDonald, PRL (2013)

vanish due to the Einstein relation and !tot reduces to the
standard result for the 2D Thomas-Fermi screening.

This expression for the total electric potential is particu-
larly illuminating in the limit in which the separation d
between the external charge and the TI surface is much
larger than the screening length ":

!totðq; tÞ ¼
2#eQ

q
exp½%qðdþ vMtÞ': (3)

The potential at time t, which controls the instantaneous
Hall currents and hence the instantaneous magnetization, is
identical to that from an external charge that is located not
at vertical position d, but at vertical position dþ vMt. As
shown elsewhere [6], because of the magnetoelectric dual-
ity of axion electrodynamics, these Hall currents give rise
to a magnetization that is identical to that produced by a
magnetic monopole located at a distance dþ vMt below
the TI surface. Hence we arrive at the conclusion that
screening is initially equivalent to the apparent monopole
position moving away from the TI surface with velocity
vM. Currents flow until macroscopic electric fields vanish.
The topological magnetoelectric effect is therefore purely
transient when d ( ".

Since the external potential remains large for t ! 1 at
length scales smaller than ", there will be a macroscopic
orbital magnetic response to the screened potential if the
contributions to the transverse current from the screened
electric field and from the induced density inhomogeneities
do not cancel. Is there an Einstein relation for Hall cur-
rents? Below we use a quantum kinetic theory to answer
this question microscopically. We conclude that the answer
is no in general. Both drift- and diffusion-type terms do
appear. The contribution to the Hall current from density
inhomogeneities can be understood as being due to a
nonuniform internal magnetic moment [15] density. For
the particular case of a two-dimensional massive Dirac
equation model for TI surface states, however, we explain
below that the drift and diffusion Hall currents do cancel
when the carrier density is nonzero and T ! 0, further
limiting the experimental accessibility of the topological
magnetoelectric effect. Quantitative estimates intended to
assess its observability are provided in the Supplemental
Material [16].

Do transverse currents flow in equilibrium?.—After
screening is fully established, the electrochemical potential
is constant. Transport currents are absent, and current flow
on the surface, if any, can only exist due to nonuniform
magnetization [17]. In addressing these currents, it is help-
ful to first consider the simplified problem illustrated in
Fig. 1 in which the electrostatic potential depends on only
one coordinate and has a jump from !L to !R near an
interior point. Currents can flow only in the narrow region
where the potential has a gradient. The current flows in the
y direction in the transition region only if the values of the
magnetization in the uniform regions are different. These

values can be found by solving the thermodynamic prob-
lem in those regions, which is insensitive to boundary
effects. If the common electrochemical potential on the
surface is $ec, the problem then reduces to the calculation
of the magnetization of 2D massive Dirac fermions at
chemical potentials $L;R ¼ $ec % e!L;R.
If a nonzero magnetization exists in the absence of an

external magnetic field in a uniform sample of area A and
with chemical potential $ we can find it using the thermo-
dynamic expression:

Mz ¼ % 1

A

!
@!

@Bz

"

T;$
¼ % 1

A
lim
Bz!0

!ðBzÞ %!ð%BzÞ
2Bz

; (4)

where ! is the thermodynamic potential of the system,
which can be calculated knowing the spectrum of Landau
levels on the surface: [18]

"n ¼ sgnðnÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2@2v2

‘2
jnjþ"2

s
; n ! 0;

"0 ¼ %sgnðBzÞj"j; n ¼ 0:
(5)

In Eq. (5) v is the Dirac velocity, " is the mass parameter,

n is the Landau level number, and ‘ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi@c=jejBz

p
is the

magnetic length. Since only the position of the zeroth
Landau level depends on the sign of the magnetic field,
only this level contributes to Mz. If the chemical potential
is in either the conduction or valence band, the temperature
is zero and disorder is neglected, no change in the thermo-
dynamic potential occurs. It follows that the magnetization
does not depend on the value of the chemical potential as
long as it is outside of the gap, and therefore that no current
flows in the region of varying electric potential. We now

FIG. 1 (color online). Calculation of the 2D massive Dirac
model equilibrium magnetization in the presence of an electric
potential step, !ðxÞ. The latter is assumed to have values !L;R at
x ! )1, respectively. The green dashed line indicates the
position of the electrochemical potential $ec constant in the
surface. Out-of-plane magnetization values in the macroscopic
regions on both sides of the step are given by Mzð$ec % e!L;RÞ,
where Mzð$Þ is the z component of the magnetization of a
uniform 2D massive Dirac model with chemical potential $.

PRL 111, 016801 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending
5 JULY 2013
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longitudinal conductance leads 
to a receding monopole

no monopoles in equilibrium 
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dyonic screening:

no direct correspondence between Hall effect and equilibrium currents



Beyond axion electrodynamics
TI in proximal coupling to a ferromagnetic texture

In general, we have inhomogeneities in the electrical potential and 
magnetic exchange field

What is the nature of the magnetic (spin and orbital) response of 
the TI surface?

What is the feedback to (and coupling with) the magnetic layer?

x

yz

xdw
ɸdw!

Idw

.

λdw

TI bulk

Dirac 2DEG (Δ=0)

Δ>0Δ<0

Vy

m(x,t)

YT and Loss, PRL (2012)

gapped regions

chiral mode



Effective theory for magnetic response
Peierls-substituted Dirac equation with Zeeman coupling:

conduction band

valence band
(outside low-energy description)
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Magnetic response
Spin/orbital contributions to the (local) out-of-plane magnetization:

M = M
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Exchange coupling and local spin density
The local exchange interaction has the general form

We are thus tasked with calculating the out-of-plane and planar 
components of the spin density

Due to the electronic helicity, the out-of-plane orbital magnetization 
has the full information about the planar spin density     :

H 0 = J(n
x

�̂
x

+ n
y

�̂
y

) + J?nz

�̂
z

n - magnetic order (direction) �̂ - electron spin

⇢k

�� ⌘ 2�@�0Mo

=

sinh(�µ)

cosh(��0) + cosh(�µ)
�
µ

⌘ 2�@
µ

M
o

=

sinh(��0)

cosh(��0) + cosh(�µ)

- universal scaling functions YT, Pesin, and Loss, PRB (2015)
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Feedback on the magnetization
Landau-Lifshitz equation:

The TI feedback is obtained by integrating electrons out:

spin torque
s(1 + ↵n⇥)@tn = n⇥

⇣
He↵ � J⇢k � J?⇢zz

⌘
= n⇥H⇤

(intrinsic) magnetic free energy TI feedback (spin torque)

DMI
F 0[n] = �Kn2

z

2
� �DM

2
(nzr · n� n ·rnz)� �MEE · n

ME effect
⌦0 =

Z
d2rF 0[n]

Magnetic free energy, with universal scaling of the DMI 
and magnetoelectric coefficients with the exchange-
induced gap, temperature, and chemical potential: �ME = (Je/4⇡~v)�µ

�DM = (JJ?/4⇡~v)��

YT, Pesin, and Loss, PRB (2015)

H⇤ ⌘ ��n(⌦0 + ⌦0)



Skyrmionic lattice
Phase diagram engendered by the DMI:

266 A. Bogdanm, A. Hubert/Journal ofMagnetism and Magnetic Materials 138 (1994) 255-269 
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Fig. 11. Average magnetization in the vortex state (m, ) and in the 
spiral state cm,) as a function of I? along the phase boundary 
h,( .k) between these two phases. 

0  2 4 6 P . IO 

Fig. 9. Calculated phase diagram of magnetic states with the 
applied field h (5) and the material parameter k (12, 16) as 
independent variables. The critical field for the transition of the 
vortex state into the uniform state h* ( k) is derived in Section 3. I. 
The spiral state shows a similar transition at h,(i), which is 
discussed in Section 2.5. Finally, the first-order transition between 
spirals and vortices is given by the line h,(k), which is derived in 
this section. Details in the neighbourhood of the intersection of the 
three phase boundaries can be found in Fig. 10. 

at the mentioned point, a triple point in the phase 
diagram: 

i&) = 1.13943, h,, = 0.049690. (43) 

In the range 1 < I? < GU the vortex state cannot exist 
as a stable phase. Here a direct transition between 
the spiral and uniform states is predicted at the line 
h,(Gj. The vortex lattice can exist only as a 

0.15- 

h j 
1: 

O.li 

c 
I 1.1 1.2 1.3 P- 1.5 

Fig. 10. Detail of the phase diagram (Fig. 9) near the triple point. 

metastable state in fields lower than h* ( I?), which 
here is smaller than h,(K). 

The parameters of the triple point Co, h,, (43) 
were calculated by two independent methods. In the 
first method the field of the first-order phase transi- 
tion h,(C) near KC, was calculated. Then the point 
(43) was determined by extrapolating the difference 
h,( 2) - h,(G) to zero. In the other method the en- 
ergy of isolated vortices was extrapolated on the line 
h,( 2) to zero. With the parameters N = 12 000, R = 
100 an accuracy of lo-” was obtained in the second 
approach. The results of both methods agreed within 
this accuracy. 

3.3. Magnetization curLvs and metastable states 

Fig. 12 shows the magnetization curves for differ- 
ent values of K. The bold lines apply to the sequence 
of thermodynamically stable states. Let us start the 
discussion with the case of large I? (Fig. 12a). 

Above h* the material is in the uniform state with 
m, = 1. When the magnetic field reaches h*, the 
process of creation of magnetic vortices begins. In 
fields between h* and h, the magnetization de- 
creases due to a reconstruction of the vortex lattice. 
At h, a first-order phase transition to the spiral 
structure takes place. In the region of existence of 
the spiral structure (h, < h < -h,) the magnetiza- 
tion changes almost linearly with magnetic field. 
Another discontinuous transition into a reverse vor- 
tex state takes place at - h,. 

Bogdanov and Hubert, JMMM (1994)



Thermal Hall effect
The magnetic texture fomented by the DM interaction can 
produce Landau-level-like magnonic Chern bands, which harbor 
magnonic chiral edge states and induce a thermal Hall effect:2

FIG. 1. Pictorial representation of the thermal spin Hall ef-
fect. A temperature difference ∆T applied to a sample leads
to a finite heat current. Since the heat current is carried
by the magnons in the system, the fictitious magnetic field
that magnons experience due to a non-trivial magnetic ground
state will lead to a finite thermal Hall conductivity.

III we derive the relevant ground state properties of the
different ground states in the phase diagram of the insu-
lating ferromagnet with nonzero Dzyaloshinskii-Moriya
interaction. In Sec. IV we calculate the band structure
of one of the ground states, the triangular skyrmion lat-
tice, and calculate its thermal Hall conductivity.

II. MAGNONS IN THE PRESENCE OF
MAGNETIC TEXTURE

We consider a two-dimensional non-itinerant ferromag-
net in the x-y plane with spatially varying and time de-
pendent spin density sm(r, t). The spin density is related
to the magnetization M(r, t) as sm(r, t) = M(r, t)/γ,
where γ is the gyromagnetic ratio (γ < 0 for electrons).
The magnitude s of the spin density is assumed to be
constant, and m(r, t) is a unit vector. The system is
described by the Lagrangian10,11

L =

∫

d2r [D(m) · ṁ− F(m, ∂jm)] . (1)

Here D = s! (n×m) /(1 +m · n) is the vector potential
corresponding to Wess-Zumino action with an arbitrary
n pointing along the Dirac string. F(m, ∂jm) is the mag-
netic free energy density of the system, which we assume
to be of the form (double indices are summed over)

F(m, ∂jm) =
Js

2
(∂jm)2−Msm·H+sFΓ(m, ∂jm). (2)

Here J is the strength of the exchange interaction, Ms =
γs is the saturation magnetization, H the external mag-
netic field (which we will always assume to be in the z di-
rection), and FΓ(m, ∂jm) describes terms due to broken
symmetries. For isotropic ferromagnets in the exchange

approximation, the leading order terms in the free en-
ergy are quadratic in the texture [first term in Eq. (1)].
Breaking inversion symmetry by spin-orbit interactions,
while still retaining isotropy in the x-y plane, allows to
construct terms that are first order in texture. These
terms are given by

FΓ(m, ∂jm) = ΓRmz∇ ·m+ ΓDMm · (∇×m) . (3)

Here, we defined ∇ = ∂xx̂ + ∂yŷ. The first term is due
to structural inversion symmetry breaking and hence is
anisotropic in the z direction. Such terms occur in sys-
tems with finite Rashba spin-orbit interaction16 or on the
surface of a topological insulator.15 The second term de-
scribes Dzyaloshinskii-Moriya interaction,17 which origi-
nates from the breaking of bulk inversion symmetry and
is therefore isotropic. We note that the two terms in Eq.
(3) are equivalent (up to an irrelevant boundary term)
under a simple rotation around the z axis in spin space.
Since all other terms in Eq. (1) are invariant under such
rotations, we can always absorb the term proportional
to ΓR in the term proportional to ΓDM. We will there-
fore put ΓR to zero in the remainder of this work. For
simplicity, we have ignored a term −κm2

z that would de-
scribe easy axis anisotropy, and a term −Msm · Hm/2,
where Hm describes the magnetic stray field, in Eq. (2).
Substitution of Eq. (1) in the Euler-Lagrange equation
leads to the Landau-Lifshitz equation

s!ṁ−m× δmF (m, ∂jm) = 0, (4)

where F (m, ∂jm) is the total free energy of the system.
We split the magnetization m in a static equilibrium
magnetization m0 and small fast oscillations δm (spin
waves) around the equilibrium magnetization. To lowest
order in δm the two are orthogonal. In a textured magnet
m0 = m0(r), which makes finding the elementary exci-
tations a nontrivial task. To circumvent this issue we in-
troduce a coordinate transformation m′(r) = R̂(r)m(r),
where R̂(r) is such that the new equilibrium magnetiza-
tion m′

0 is constant and parallel to the z axis. In this
coordinate frame the spin waves are in the x-y plane.
The 3 × 3 matrix R̂ describes a rotation over an an-

gle π around the axis defined by the unit vector n =
[ẑ+m0] / [2 cos (θ/2)]. Here, θ is the polar angle of m0.
Using Rodriques’ rotation formula, we find R̂ = 2nnT−1̂.
The effect of the transformation to the new coordi-

nate system is that we have to use the covariant form of
the differential operators, ∂µ → (∂µ + Âµ), with Âµ =
R̂−1(∂µR̂), in the Landau-Lifshitz equation. The sub-
script µ describes both time (µ = 0) and space (µ = 1, 2)
coordinates.
In the new coordinate system, the Landau-Lifshitz

equation for the free action Eq. (2) becomes

i!∂tm+ =
[

J (∇/i+A)2 + ϕ
]

m+. (5)

Here, m± = (δm′
x ± iδm′

y)/
√
2 describe circular spin

waves in the rotated frame. Furthermore, ϕ = m0 ·H/s+

Hoogdalem, YT, and Loss, PRB (2013)

5

zero average (we work in the Landau gauge)

A0(r) = −B0yx̂

A′(r) =
∑

τ,η

[Ax(τ, η)x̂+Ay(τ, η)ŷ] e
i(τ k̂1+ηk̂2)·r.(15)

Here, B0 = 8π/(
√
3a2) is the average fictitious mag-

netic field, and k̂1 = (2π/a)(x̂ − ŷ/
√
3) and k̂2 =

(2π/a)(2/
√
3)ŷ are the basis vectors of the reciprocal lat-

tice, such that the periodic part of the fictitious vector
potential satisfies A′(r+a1) = A′(r+a2) = A′(r). Such
spatially varying magnetic fields are known to give rise
to finite Hall effects, even in the absence of a nonzero
average.25

IV. THERMAL HALL CONDUCTIVITY OF
THE SKYRMION LATTICE

Since the skyrmion lattice can be described by a free
bosonic Hamiltonian with a spatially varying fictitious
magnetic field with on average two magnetic flux quanta
per unit cell and the same symmetry as the skyrmion
lattice, the eigenstates of the skyrmion lattice are mag-
netic Bloch states. In Sec. IVA we will determine the
excitation spectrum and explicit form of these states. In
Sec. IVB we will show how the thermal Hall conduc-
tivity of the skyrmion lattice is determined by the Berry
curvature of these magnetic Bloch states.

A. Diagonalization

To find the elementary excitations of the skyrmion lat-
tice, we need to diagonalize the Hamiltonian H in Eq.
(7) with the fictitious magnetic vector potential given in
Eq. (14). We do this by numerically diagonalizing the
matrix that results from rewriting H in the basis of the
Landau levels that describe excitations with the appro-
priate symmetry in the presence of the fictitious magnetic
vector potential A0(r) only. Our derivation follows that
of Ref. 24, with the difference that we consider the case
with two instead of one flux quantum per unit cell.
Eigenstates for the free system with only a homoge-

neous magnetic field B0ẑ and without any underlying
symmetries are given by

ψnkx(r) =
Nn√
L
e−ikxxϕn(B

1

2

0 y +B
− 1

2

0 kx), (16)

where Nn = 1√
2nn!

(

B0

π

)
1

4 and ϕn(x) = e−x2/2Hn(x),

with Hn(x) the n-th Hermite polynomial. The corre-
sponding energies are En = 2JB0(n + 1/2). To account
for the presence of the triangular lattice, and the fact
that every unit cell contains two flux quanta, we need to
find the most general linear combination of eigenstates

FIG. 3. Band structure of the skyrmion lattice with parame-
ters R = 45 nm, ζ = 70 µm−1, and 2JB0/kB ≈ 50 mK. The
labels on the horizontal axis denote (k1, k2), with the wave
vectors normalized to 2π/a.

that satisfies

M̂a1
ψnmk(r) = eik1aψnmk(r),

M̂a2
ψnmk(r) = eik2aψnmk(r). (17)

Here, k1 and k2 are defined such that (2π/a)k = k1k̂1 +
k2k̂2. Furthermore, k is restricted to lie within the first
Brillouin zone. We will discuss the origin of the quan-
tum number m later. We have to work with magnetic
translation operators M̂a1,2 since the canonical momen-
tum is no longer a good quantum number in the pres-
ence of the vector potential A0(r). These magnetic
translation operators are defined as M̂a1

= T̂a1
and

M̂a2
= exp[−i(4π/a)x]T̂a2

, where T̂a1,2 are the usual
translation operators. The appropriate eigenstates are
then given by

ψnmk(r) =
∞
∑

l=−∞

(−1)(l+
m
2
)(l+m

2
−1)e−i(l+m

2
)(

k1
2
−k2)a

×ψn,−k1−(l+m
2
) 4π

a
. (18)

The quantum number m, which in our case can take val-
ues 0 or 1, accounts for the fact that in the presence of a
natural number p of flux quanta per unit cell each mag-
netic band will split up in p subbands. These subbands
are degenerate for a constant magnetic field, but will in
general split for a spatially varying magnetic field, as we
will see later. The set of wave functions defined in Eq.
(18) constitutes a complete orthonormal basis with trian-
gular symmetry. The eigenfunctions are chosen in such a
way that perturbations in the fictitious magnetic vector
potential that are periodic in the triangular lattice are
diagonal in the momenta k1 and k2.
We are now in a position to calculate the matrix el-

ements of H with respect to the basis defined by the

6

eigenstates in Eq. (18). We rewrite H = H0 +H1 +H2,
where the subscript denotes the order in which A′(r) oc-
curs in the respective term. H0 is then trivially given
by

⟨n′,m′|H0|n,m⟩ = 2JB0 (n+ 1/2) δn,n′δm,m′ . (19)

The matrix elements of H1 are given by

⟨n′,m′|H1|n,m⟩n′≥n = Jδm′−m,τ

∑

τ,η

B(τ, η)

×
[

Ln′−n
n (zτη)−

(

n+ n′

zτη
Ln′−n
n (zτη)−

2n′

zτη
Ln′−n
n−1 (zτη)

)]

× (−1)mηGn′n(τ, η), (20)

and the matrix elements of H2 by

⟨n′,m′|H1|n,m⟩n′≥n = Jδm′−m,τ ′+τ

×
∑

τ ′,η′,τ,η

[Ax(τ
′, η′)Ax(τ, η) +Ay(τ

′, η′)Ay(τ, η)]

× (−1)m(η′+η)Gn′n(τ
′ + τ, η′ + η). (21)

We defined the function

Gn′n(τ, η) =

(

n!

n′!

)1/2

(
√

2/B0π)
n′−n

[

i
2η − τ

a
−
τ

a

]n′−n

×e−zτη/2eπiτη/2eiηk1a/2eiξ(k2a+π)/2. (22)

Furthermore, we defined zτη = (2π/
√
3)(τ2 − τη + η2).

The function Lα
n(x) is the associated Laguerre polyno-

mial. The first 10 subbands of the band structure of the
skyrmion lattice with parameters 2JB0/kB ≈ 50 mK,
R = 45 nm, and ζ = 70 µm−1 are given in Fig. 3. In
our numerical calculation we used the fact that the cou-
pling between two band decays super-exponentially [to
be precise, it decays as

√

(n!/n′!)], so that only a limited
number of bands have to be taken into account. It is
seen that the inclusion of the spatially varying fictitious
magnetic field has a pronounced effect, leading both to
different splittings of the different subbands, as well as
substantial broadening of the subbands. From Fig. 3 it
is seen that the typical level splitting between magnetic
subbands is 50 mK, which sets the temperature scale on
which the system is in the quantum Hall regime. Sys-
tems with larger ratio Γ2

DM/J will display quantum Hall
behavior at higher temperatures. We note that finite
Gilbert damping α will broaden the different magnetic
subbands by an amount (∆ω/ω) = 2α. Eventually this
will destroy the visibility of individual subbands. How-
ever, since the Gilbert damping is around α ∼ 10−3 in a
range of different materials, this only becomes problem-
atic at high magnetic subbands.
We note that within our model we do not find the ex-

pected Goldstone modes associated with the skyrmion
lattice.26 We argue that this is due to our adiabatic as-
sumption, which breaks down for the smallest wave vec-
tors. Assuming a quadratic dispersion for the magnons,

FIG. 4. Berry curvature of the two highest magnetic sub-
bands in Fig. 3 in a single Brillouin zone. The subband cor-
responding to the top figure does not carry a net curvature,
the bottom figure carries 2π.

we can estimate the magnitude |km| of the characteris-
tic wave vector of the magnons that make up the lowest
magnetic subband as J |km|2 = JB0, which leads to a
typical magnon wave length λm ∼ a. The wave vector
|km| increases for higher subbands. Since the accuracy
of our model increases with increasing wave vector, our
description improves for higher magnetic subbands.
In the next section we will investigate the effect of the

finite bandwidth of the magnetic subbands on the ther-
mal Hall conductivity of the skyrmion lattice.

B. Thermal Hall conductivity

It is well known27 that the semi-classical dynamics of
a wave packet in the basis of the magnetic Bloch states
unk(r) = e−ik·rψnk(r) is given by

ṙ = ∂kEn(k)− k̇×Ωn(k) and !k̇ = 0. (23)

We have assumed here that there are no electric fields and
that the states unk(r) are the eigenstates of the Hamil-
tonian H including the fictitious magnetic vector poten-
tial A(r). Ωn(k) is the Berry curvature of the magnetic
Bloch band. Since we consider a two-dimensional system,
only its z component is relevant. It is given by

Ωn(k) = 2Im

[〈

unk(r)

∂kx

∣

∣

∣

∣

unk(r)

∂ky

〉]

. (24)

For the skyrmion lattice, the magnetic Bloch states are
given by

unk(r) = e−ik·r
∑

n′,m′

cnn′m′kψn′m′k(r). (25)

cf. Katsura et al., PRL (2010); Onose et al., Science (2010)
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Our understanding of the interaction between electric (transport) 
currents and magnetic dynamics at magnetic/nonmagnetic 
interfaces is based on the phenomenological theory according to:

• Structural/crystalline symmetries

• Onsager reciprocity

• Nonequilibrium thermodynamics
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We study the role of spin-orbit interactions in the coupled magnetoelectric dynamics of a ferromagnetic film
coated with an electrical conductor. While the main thrust of this work is phenomenological, several popular
simple models are considered microscopically in some detail, including Rashba and Dirac two-dimensional
electron gases coupled to a magnetic insulator, as well as a diffusive spin Hall system. We focus on
the long-wavelength magnetic dynamics that experiences current-induced torques and produces fictitious
electromotive forces. Our phenomenology provides a suitable framework for analyzing experiments on
current-induced magnetic dynamics and reciprocal charge pumping, including the effects of magnetoresistance
and Gilbert-damping anisotropies, without a need to resort to any microscopic considerations or modeling.
Finally, some remarks are made regarding the interplay of spin-orbit interactions and magnetic textures.

DOI: 10.1103/PhysRevB.90.014428 PACS number(s): 85.75.−d

I. INTRODUCTION

Several new directions of spintronic research have opened
and progressed rapidly in recent years. Much enthusiasm is
bolstered by the opportunities to initiate and detect spin-
transfer torques in magnetic metals [1] and insulators [2],
which could be accomplished by variants of the spin Hall
effect [3], along with the reciprocal electromotive forces
induced by magnetic dynamics. The spin Hall effect stands
for a spin current generated by a transverse applied charge
current, in the presence of spin-orbit interaction. From the
perspective of angular momentum conservation, the spin Hall
effect allows angular momentum to be leveraged from the
stationary crystal lattice to the magnetic dynamics. A range of
nonmagnetic materials from metals to topological insulators
have been demonstrated to exhibit strong spin-orbit coupling,
thus allowing for efficient current-induced torques.

Focusing on quasi-two-dimensional (2D) geometries, we
can generally think of the underlying spin Hall phenomena
as an out-of-equilibrium magnetoelectric effect that couples
planar charge currents with collective magnetization dynam-
ics. In typical practical cases, the relevant system is a bilayer
heterostructure, which consists of a conducting layer with
strong spin-orbit coupling and ferromagnetic layer with well-
formed magnetic order. In this case, the current-induced spin
torque reflects a spin angular momentum flux normal to the
plane, which explains the spin Hall terminology.

The microscopic interplay of spin-orbit interaction and
magnetism at the interface translates into a macroscopic
coupling between charge currents and magnetic dynamics. A
general phenomenology applicable to a variety of disparate
heterostructures can be inferred by considering a course-
grained 2D system, which both conducts and has magnetic
order as well as lacks inversion symmetry (or else the
pseudovectorial magnetization would not couple linearly to
the vectorial current density). In a bilayer heterostructure, the
latter is naturally provided by the broken reflection symmetry
with respect to its plane.

II. GENERAL PHENOMENOLOGY

Let us specifically consider a bilayer heterostructure with
one layer magnetic and one conducting, as sketched in Fig. 1.

y

z

j

ṅ

js

H

aN

aF

x

F

N

FIG. 1. (Color online) Heterostructure consisting of a magnetic
top layer and conducting underlayer. The charge current j induces a
torque τ acting on the magnetic dynamics, which quantifies the spin
angular-momentum transfer in the z direction. This can be thought
of as a spin current js entering the ferromagnet at the interface.
Reciprocally, magnetic dynamics ṅ induces a motive force ϵ acting
on the itinerant electrons in the conductor.

The nonmagnetic layer can be tailored to enhance spin-orbit
coupling effects in and out of equilibrium. Phenomenolog-
ically, we have a quasi-2D system along the xy plane,
which will for simplicity be taken to be isotropic and mirror
symmetric in plane while breaking reflection symmetry along
the z axis. In other words, the structural symmetry is assumed
to be that of a Rashba 2D electron gas (although microscopic
details could be more complex), subject to a spontaneous
time-reversal symmetry breaking due to the magnetic order.
Common examples of such heterostructures include a thin
transition-metal [1] or magnetic-insulator [2] film capped by
a heavy metal, or a layer of 3D topological insulator doped on
one side with magnetic impurities [4].

The course-grained hydrodynamic variables used to de-
scribe our system are the three-component collective spin
density (per unit area) s(r,t) = sn(r,t) ≡ (snx,sny,snz) and
the two-component 2D current density (per unit length)
j(r,t) ≡ (jx,jy) in the xy plane. Considering fully saturated
magnetic state well below the Curie temperature, we treat the
spin density as a directional variable, such that its magnitude

1098-0121/2014/90(1)/014428(8) 014428-1 ©2014 American Physical Society
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s(ṅ+ n⇥ ↵̂ṅ) = H⇤ ⇥ n+ ⌧

Lj̇+ %̂j = E+ ✏

torque
motive force

⌧ = (⌘ + #n⇥)(z⇥ j)⇥ n

✏ = [(⌘ + #n⇥)ṅ]⇥ z



For the ferromagnetic metals where the exchange interaction is 
strong and normal metals where spin-orbit coupling is weak:

Recently: growing interest toward replacing ferromagnetic metals 
with insulators and normal metals with conductors exhibiting 
strong spin-orbit interactions

• Direct/inverse spin Hall effects

• Spin transport via magnetic dynamics (e.g., magnons, domain walls)

m

µs

Is �dµs

dt
 Is ⌘ ⌧ ! dm

dt

Towards magnetic insulators and extreme SOI

spin-transfer torque/pumping
YT et al., RMP (2005)



TI-based magnetic heterostructures
Perhaps the most dramatic magnetoelectric phenomena can be 
expected at the interfaces between magnetic and topological 
insulators:

• Electric current is localized at the interface, where the magnetic proximity 
effects are strongest

• The spin-orbit interactions constitute 
the dominant contribution to the 
electronic Hamiltonian: This limit is 
opposite to the nonrelativistic regime

• If the Dirac electrons are gapped by 
the ferromagnet, the bilayer provides 
an essentially nondissipative 
magnetoelectric compound
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Figure 1 | Experimental set-up and magnetic properties of the (Bi0.5Sb0.5)2Te3/(Cr0.08Bi0.54Sb0.38)2Te3 bilayer heterostructure. a, Three-dimensional
schematic of the bilayer heterostructure. The top layer (light blue) shows the 3 quintuple layers (Bi0.5Sb0.5)2Te3 and the bottom layer (light red) presents
the 6 quintuple layers (Cr0.08Bi0.54Sb0.38)2Te3. Bext (red arrow) represents the external magnetic field and M (blue arrow) denotes the magnetization of
the bottom (Cr0.08Bi0.54Sb0.38)2Te3 layer. BK (green arrow) is the out-of-plane anisotropy field. b, Micrograph of the Hall bar device with schematic
illustrations of the Hall measurement set-up. The width of the Hall bar and the length between two neighbouring Hall contacts are both 5 µm. c, The Hall
resistance as a function of the applied external magnetic field for both the out-of-plane (✓B =0) and nearly in-plane (✓B ⇡⇡/2) directions, respectively, at
1.9 K. d, Superconducting quantum interference device measurement of the magnetization for both the out-of-plane (✓B =0) and in-plane (✓B ⇡⇡/2)
directions, respectively, at 5 K for external magnetic fields up to ±500 mT.

Bext and M from the z axis, respectively. Here, BK =Kcos✓Mẑ is
the out-of-plane anisotropy field with K being the anisotropy
coe�cient estimated to be around 0.9 T (Supplementary Section 2).

Field-dependent Hall resistance measurements of the TI/Cr-
doped TI bilayer heterostructure for both the out-of-plane (✓B =0)
and nearly in-plane (✓B ⇡ ⇡/2) directions were carried out at
1.9 K, and the results are shown in Fig. 1c. The nearly square-
shape magnetic hysteresis loop of RH at ✓B = 0 clearly suggests
that the magnetization easy axis is out-of-plane (that is, along the
z direction). In addition, superconducting quantum interference
device measurements were carried out to directly probe the
magnetization M for both the out-of-plane (✓B = 0) and in-plane
(✓B ⇡ ⇡/2) directions, and the results are shown in Fig. 1d.
The saturation magnetization MS is measured to be around
16 emu cm�3 along the out-of-plane (✓B = 0) direction for applied
magnetic fields greater than 100mT. In contrast, M does not
show any saturation behaviour even when |Bext| >500 mT for
fields along the in-plane (✓B ⇡⇡/2) direction, again indicating the
robust out-of-plane magnetic anisotropy of our TI/Cr-doped TI
heterostructure sample.

Magnetization switching induced by an in-plane current. In our
conductive TI/Cr-dopedTI bilayer heterostructure, a dominant spin
accumulation in the Cr-doped TI layer with spin polarized in the
transverse direction is expected when passing a charge current
in the y direction due to the spin-Hall e�ect in the bulk and
the spin polarization arising from the Rashba-type interactions
at the interfaces. A strong enhancement of the interfacial spin
accumulation can be expected due to the spin-momentum locking
of the topological surface states21,22,25,38,39. The accumulated spins’
angularmomentum can be directly transferred to themagnetization

M and therefore a�ect its dynamics. In particular, such a SOT can be
described as ⌧SO =��M⇥BSO, where the e�ective spin–orbit field
is BSO = I�SOx̂ ⇥m. Here � is the gyromagnetic ratio, �SO is the
coe�cient characterizing the SOC strength in the system, I is the
charge current conducting along the longitudinal direction andm is
the unit vector that denotes the magnetization direction. This SOT
is normally referred to as the spin transfer-like SOT (ref. 4), and
the equally important field-like SOT term is found to be an order
of magnitude smaller in our structure (Supplementary Sections 4
and 5). As a result, we focus mainly on the spin transfer-like SOT
in the following. Accordingly, we illustrate the four stable states
in Fig. 2a where the applied d.c. current, Id.c., conducts along the
longitudinal direction (that is, ±y axis), and the external magnetic
field is also applied along the ±y axis. In panel 1 of Fig. 2a,
for example, we show the case where the d.c. current, Id.c., and
the in-plane external magnetic field, By, are both applied along
the +y axis. The e�ective spin–orbit field, BSO, induced by Id.c. is
pointing along the tangential �✓̂ direction of M, which tilts M up
to obtain a positive z component, Mz , when in equilibrium. The
other three cases for di�erent configurations of the applied Id.c.
and By are illustrated in panels 2–4 of Fig. 2a, correspondingly. To
summarize, in the presence of a constant external magnetic field in
the y direction, the z-componentmagnetizationMz can be switched,
depending on the d.c. current conduction direction1,3,8; likewise,
when the applied d.c. current is fixed, Mz can also be switched by
changing the in-plane external magnetic field.

On the basis of such a scenario, we carried out the (Id.c.-fixed,
By-dependent) and the (By-fixed, Id.c.-dependent) experiments at
1.9 K; the results are shown in Fig. 2b,c, respectively. Specifically,
when Id.c. =+10 µA (blue squares in Fig. 2b), the AHE resistance
RAHE goes from negative to positive as the applied in-planemagnetic
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Figure 1 | Experimental set-up and magnetic properties of the (Bi0.5Sb0.5)2Te3/(Cr0.08Bi0.54Sb0.38)2Te3 bilayer heterostructure. a, Three-dimensional
schematic of the bilayer heterostructure. The top layer (light blue) shows the 3 quintuple layers (Bi0.5Sb0.5)2Te3 and the bottom layer (light red) presents
the 6 quintuple layers (Cr0.08Bi0.54Sb0.38)2Te3. Bext (red arrow) represents the external magnetic field and M (blue arrow) denotes the magnetization of
the bottom (Cr0.08Bi0.54Sb0.38)2Te3 layer. BK (green arrow) is the out-of-plane anisotropy field. b, Micrograph of the Hall bar device with schematic
illustrations of the Hall measurement set-up. The width of the Hall bar and the length between two neighbouring Hall contacts are both 5 µm. c, The Hall
resistance as a function of the applied external magnetic field for both the out-of-plane (✓B =0) and nearly in-plane (✓B ⇡⇡/2) directions, respectively, at
1.9 K. d, Superconducting quantum interference device measurement of the magnetization for both the out-of-plane (✓B =0) and in-plane (✓B ⇡⇡/2)
directions, respectively, at 5 K for external magnetic fields up to ±500 mT.

Bext and M from the z axis, respectively. Here, BK =Kcos✓Mẑ is
the out-of-plane anisotropy field with K being the anisotropy
coe�cient estimated to be around 0.9 T (Supplementary Section 2).

Field-dependent Hall resistance measurements of the TI/Cr-
doped TI bilayer heterostructure for both the out-of-plane (✓B =0)
and nearly in-plane (✓B ⇡ ⇡/2) directions were carried out at
1.9 K, and the results are shown in Fig. 1c. The nearly square-
shape magnetic hysteresis loop of RH at ✓B = 0 clearly suggests
that the magnetization easy axis is out-of-plane (that is, along the
z direction). In addition, superconducting quantum interference
device measurements were carried out to directly probe the
magnetization M for both the out-of-plane (✓B = 0) and in-plane
(✓B ⇡ ⇡/2) directions, and the results are shown in Fig. 1d.
The saturation magnetization MS is measured to be around
16 emu cm�3 along the out-of-plane (✓B = 0) direction for applied
magnetic fields greater than 100mT. In contrast, M does not
show any saturation behaviour even when |Bext| >500 mT for
fields along the in-plane (✓B ⇡⇡/2) direction, again indicating the
robust out-of-plane magnetic anisotropy of our TI/Cr-doped TI
heterostructure sample.

Magnetization switching induced by an in-plane current. In our
conductive TI/Cr-dopedTI bilayer heterostructure, a dominant spin
accumulation in the Cr-doped TI layer with spin polarized in the
transverse direction is expected when passing a charge current
in the y direction due to the spin-Hall e�ect in the bulk and
the spin polarization arising from the Rashba-type interactions
at the interfaces. A strong enhancement of the interfacial spin
accumulation can be expected due to the spin-momentum locking
of the topological surface states21,22,25,38,39. The accumulated spins’
angularmomentum can be directly transferred to themagnetization

M and therefore a�ect its dynamics. In particular, such a SOT can be
described as ⌧SO =��M⇥BSO, where the e�ective spin–orbit field
is BSO = I�SOx̂ ⇥m. Here � is the gyromagnetic ratio, �SO is the
coe�cient characterizing the SOC strength in the system, I is the
charge current conducting along the longitudinal direction andm is
the unit vector that denotes the magnetization direction. This SOT
is normally referred to as the spin transfer-like SOT (ref. 4), and
the equally important field-like SOT term is found to be an order
of magnitude smaller in our structure (Supplementary Sections 4
and 5). As a result, we focus mainly on the spin transfer-like SOT
in the following. Accordingly, we illustrate the four stable states
in Fig. 2a where the applied d.c. current, Id.c., conducts along the
longitudinal direction (that is, ±y axis), and the external magnetic
field is also applied along the ±y axis. In panel 1 of Fig. 2a,
for example, we show the case where the d.c. current, Id.c., and
the in-plane external magnetic field, By, are both applied along
the +y axis. The e�ective spin–orbit field, BSO, induced by Id.c. is
pointing along the tangential �✓̂ direction of M, which tilts M up
to obtain a positive z component, Mz , when in equilibrium. The
other three cases for di�erent configurations of the applied Id.c.
and By are illustrated in panels 2–4 of Fig. 2a, correspondingly. To
summarize, in the presence of a constant external magnetic field in
the y direction, the z-componentmagnetizationMz can be switched,
depending on the d.c. current conduction direction1,3,8; likewise,
when the applied d.c. current is fixed, Mz can also be switched by
changing the in-plane external magnetic field.

On the basis of such a scenario, we carried out the (Id.c.-fixed,
By-dependent) and the (By-fixed, Id.c.-dependent) experiments at
1.9 K; the results are shown in Fig. 2b,c, respectively. Specifically,
when Id.c. =+10 µA (blue squares in Fig. 2b), the AHE resistance
RAHE goes from negative to positive as the applied in-planemagnetic
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Our phenomenology can be applied to analyze current-driven 
dynamics in magnetically-doped TI’s:

Magnetically-doped topological insulators
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Figure 1 | Experimental set-up and magnetic properties of the (Bi0.5Sb0.5)2Te3/(Cr0.08Bi0.54Sb0.38)2Te3 bilayer heterostructure. a, Three-dimensional
schematic of the bilayer heterostructure. The top layer (light blue) shows the 3 quintuple layers (Bi0.5Sb0.5)2Te3 and the bottom layer (light red) presents
the 6 quintuple layers (Cr0.08Bi0.54Sb0.38)2Te3. Bext (red arrow) represents the external magnetic field and M (blue arrow) denotes the magnetization of
the bottom (Cr0.08Bi0.54Sb0.38)2Te3 layer. BK (green arrow) is the out-of-plane anisotropy field. b, Micrograph of the Hall bar device with schematic
illustrations of the Hall measurement set-up. The width of the Hall bar and the length between two neighbouring Hall contacts are both 5 µm. c, The Hall
resistance as a function of the applied external magnetic field for both the out-of-plane (✓B =0) and nearly in-plane (✓B ⇡⇡/2) directions, respectively, at
1.9 K. d, Superconducting quantum interference device measurement of the magnetization for both the out-of-plane (✓B =0) and in-plane (✓B ⇡⇡/2)
directions, respectively, at 5 K for external magnetic fields up to ±500 mT.

Bext and M from the z axis, respectively. Here, BK =Kcos✓Mẑ is
the out-of-plane anisotropy field with K being the anisotropy
coe�cient estimated to be around 0.9 T (Supplementary Section 2).

Field-dependent Hall resistance measurements of the TI/Cr-
doped TI bilayer heterostructure for both the out-of-plane (✓B =0)
and nearly in-plane (✓B ⇡ ⇡/2) directions were carried out at
1.9 K, and the results are shown in Fig. 1c. The nearly square-
shape magnetic hysteresis loop of RH at ✓B = 0 clearly suggests
that the magnetization easy axis is out-of-plane (that is, along the
z direction). In addition, superconducting quantum interference
device measurements were carried out to directly probe the
magnetization M for both the out-of-plane (✓B = 0) and in-plane
(✓B ⇡ ⇡/2) directions, and the results are shown in Fig. 1d.
The saturation magnetization MS is measured to be around
16 emu cm�3 along the out-of-plane (✓B = 0) direction for applied
magnetic fields greater than 100mT. In contrast, M does not
show any saturation behaviour even when |Bext| >500 mT for
fields along the in-plane (✓B ⇡⇡/2) direction, again indicating the
robust out-of-plane magnetic anisotropy of our TI/Cr-doped TI
heterostructure sample.

Magnetization switching induced by an in-plane current. In our
conductive TI/Cr-dopedTI bilayer heterostructure, a dominant spin
accumulation in the Cr-doped TI layer with spin polarized in the
transverse direction is expected when passing a charge current
in the y direction due to the spin-Hall e�ect in the bulk and
the spin polarization arising from the Rashba-type interactions
at the interfaces. A strong enhancement of the interfacial spin
accumulation can be expected due to the spin-momentum locking
of the topological surface states21,22,25,38,39. The accumulated spins’
angularmomentum can be directly transferred to themagnetization

M and therefore a�ect its dynamics. In particular, such a SOT can be
described as ⌧SO =��M⇥BSO, where the e�ective spin–orbit field
is BSO = I�SOx̂ ⇥m. Here � is the gyromagnetic ratio, �SO is the
coe�cient characterizing the SOC strength in the system, I is the
charge current conducting along the longitudinal direction andm is
the unit vector that denotes the magnetization direction. This SOT
is normally referred to as the spin transfer-like SOT (ref. 4), and
the equally important field-like SOT term is found to be an order
of magnitude smaller in our structure (Supplementary Sections 4
and 5). As a result, we focus mainly on the spin transfer-like SOT
in the following. Accordingly, we illustrate the four stable states
in Fig. 2a where the applied d.c. current, Id.c., conducts along the
longitudinal direction (that is, ±y axis), and the external magnetic
field is also applied along the ±y axis. In panel 1 of Fig. 2a,
for example, we show the case where the d.c. current, Id.c., and
the in-plane external magnetic field, By, are both applied along
the +y axis. The e�ective spin–orbit field, BSO, induced by Id.c. is
pointing along the tangential �✓̂ direction of M, which tilts M up
to obtain a positive z component, Mz , when in equilibrium. The
other three cases for di�erent configurations of the applied Id.c.
and By are illustrated in panels 2–4 of Fig. 2a, correspondingly. To
summarize, in the presence of a constant external magnetic field in
the y direction, the z-componentmagnetizationMz can be switched,
depending on the d.c. current conduction direction1,3,8; likewise,
when the applied d.c. current is fixed, Mz can also be switched by
changing the in-plane external magnetic field.

On the basis of such a scenario, we carried out the (Id.c.-fixed,
By-dependent) and the (By-fixed, Id.c.-dependent) experiments at
1.9 K; the results are shown in Fig. 2b,c, respectively. Specifically,
when Id.c. =+10 µA (blue squares in Fig. 2b), the AHE resistance
RAHE goes from negative to positive as the applied in-planemagnetic
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larger than the saturation field (that is, |By |>K ), the Cr-doped TI
layer will be in a single-domain state and polarized in the same
direction as By, as illustrated in regions I and III in Fig. 3. In this
state, the second-harmonic AHE resistance is given by the simple
formula (Supplementary Section 3)

R2!
AHE =�1

2
RABSO

(
��By

���K )
(1)

where RA = 36 � is the out-of-plane saturation AHE resistance.
Under such circumstance, the magnetization M will be polarized
and the oscillation magnitude induced by the a.c. current will
decrease if we further increase By , thus causing R2!

AHE to scale as
1/(

��By
�� � K ). By fitting the R2!

AHE versus By curve in the large
field region with the above formula, we find the e�ective field
value, BSO ⇡ ± 26.2mT, pointing along +z or �z depending on
the direction of By, which is consistent with the definition of
BSO. Consequently, the scaling relation of R2!

AHE confirms that
the measured R2!

AHE signal indeed comes from the SOT-induced
magnetization oscillation around its equilibrium position.

In addition to sweeping the external magnetic field, we also
performed the field rotation experiments to find the angle
dependence of the e�ective spin–orbit field. By continuously
rotating the external magnetic field orientation in the yz plane
while keeping its magnitude fixed at 2 T, we managed to e�ectively
rotate the magnetization of the Cr-doped TI layer in the yz plane,
whilemaintaining it in a single-domain state.Defining the clockwise
direction as the positive rotation direction, as shown in the insets
of Fig. 4a–c, the first- and second-harmonic AHE resistances, R1!

AHE
and R2!

AHE, were measured simultaneously4,5, as a function of the
field angle ✓B from �⇡ to ⇡ in the yz plane. The results are shown
in Fig. 4a,b, respectively (to get the correct R1!

AHE, the ordinary
Hall resistance component has been subtracted from the total first-
harmonic Hall resistance). In this case, the e�ective spin–orbit field,
B✓=BSO, induced by the a.c. current is pointing along the tangential
direction of the magnetizationM. This field B✓ is the origin of R2!

AHE,
according to (Supplementary Section 2):

R2!
AHE =� RA

2Bext cos(✓B �✓M)

d(cos✓M)

d✓B
B✓ (2)

At non-zero ✓B, the first-harmonic AHE resistance is
given by R1!

AHE = RAcos✓M. ✓M is a function of ✓B, and their
relationship can be established by solving the equilibrium
condition of the magnetization when applying an external
magnetic field. For details, see Supplementary Section 2
(Supplementary equation (2.6)). Combining R1!

AHE and R2!
AHE,

we get B✓ =�2Bext cos(✓B �✓M)R2!
AHE/(dR1!

AHE/d✓B). Shown in Fig. 4c
is the obtained e�ective spin–orbit field value B✓ as a function of
the rotation angle ✓B for di�erent amplitudes of the a.c. current,
Ia.c., ranging from 1µA to 5µA, respectively. Note that we get strictly
negative values for B✓ , which means the e�ective field B✓ is pointing
towards the �✓̂ tangential direction (that is, anticlockwise).
This is consistent with the magnetic field sweeping experiments
shown in Fig. 3 and the current-induced switching data in Fig. 2c.
Equally important, we observe that the e�ective field B✓ is highly
anisotropic, reaching the highest value at ✓B =0,±⇡ (out-of-plane)
and lowest at ✓B = ±⇡/2 (in-plane). The ✓B dependence of the
e�ective spin–orbit field reveals that the SOT anisotropy is stronger
than those reported for the AlOx/Co/Pt and MgO/CoFeB/Ta
systems4, possibly owing to the emergence of higher-order terms in
the SOT expression4 when considering the strong SOC in TIs.

In addition, we also plot the e�ective field value B✓ as a
function of the a.c. current amplitude for three di�erent ✓B angles,
✓B = 0, ⇡/4 and ⇡/2, in Fig. 4d, respectively. The e�ective field
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Figure 3 | Second-harmonic AHE resistance as a function of the in-plane
external magnetic field. The shaded regions I, II and III represent a
single-domain state pointing in the �y direction, magnetization reversal,
and a single-domain state pointing in the y direction, respectively. The solid
black line is the experimental raw data. The dashed lines denote the fitting
proportional to 1/(

��By
���K) in the negative field region (red line) and in the

positive field region (blue line), respectively. Insets in regions I and III show
the magnetization oscillation around its equilibrium position when passing
an a.c. current. The a.c. current amplitude is 2 µA and the frequency
is 15.8 Hz.

B✓ has a linear dependence on the a.c. current amplitude (or
a.c. current density amplitude Ja.c.), and the |B✓ |/Ja.c. ratio ranges
from 0.0048mT (A cm�2)�1 to 0.0146mT (A cm�2)�1, which is
nearly three orders of magnitude larger than those reported in
HMFHs (refs 4,5). Using the spin-Hall angle tangent3,4, defined as
#SH =2eMSB✓ tCr�TI/h̄Ja.c., where e is the electron charge, h̄ is Planck’s
constant divided by 2⇡ and tCr�TI is the Cr-doped TI layer thickness,
to quantify the SOT, we find that the #SH value ranges from 140 to
425, depending on ✓B, which is almost three orders of magnitude
larger than those reported in HMFHs. Here, #SH has the same sign
as the one revealed in Pt (ref. 1). Again, this giant SOT observed
in our TI/Cr-doped TI bilayer heterostructure is attributed to the
strong SOC interaction in the whole structure and the coexisting
magnetism, in conjunction with the breaking of the reflection
symmetry in the growth direction by Cr doping. The topological
surface states may play an important role in the current-induced
SOT because of the spin-momentum locking mechanism, which is
expected to be amuchmore e�cient way to generate SOT compared
with heavy metals25. The role of the topological surface states and
the various associated spin-galvanic/magneto-electric phenomena
discussed in refs 25,27,40,41 warrant additional and more elaborate
experiments. For example, the harmonic measurements of the
heterostructures with various top TI layer and bottom Cr-doped TI
layer thicknesses should be carried out; however, that is beyond the
scope of this paper.

We have demonstrated the magnetization switching by the (Id.c.-
fixed, By-driven) and the (By-fixed, Id.c.-driven) experiments that
reveal the giant SOT induced by the in-plane current in the
TI/Cr-doped TI bilayer heterostructure. The switching is e�cient,
requiring a critical current density below 8.9⇥104 A cm�2 at 1.9 K.
We further analysed the current-induced SOT by extracting the
e�ective spin–orbit field using second-harmonic measurement of
the AHE resistance. We found that the |BSO|/Ja.c. ratio, as well as
the spin-Hall angle tangent #SH , is nearly three orders of magnitude
larger than the ones reported so far in HMFHs. In addition, we
showed that the SOT exhibits a strong angular anisotropy. Very
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Figure 2 | Magnetization switching due to the SOT induced by an in-plane d.c. current. a, Schematic of the four stable magnetization states (panels 1–4)
when passing a large d.c. current, Id.c., and applying an in-plane external magnetic field, By, in the ±y directions. The e�ective spin–orbit field BSO induced
by the d.c. current and the anisotropy field BK are both considered. b, The AHE resistance RAHE as a function of the in-plane external magnetic field when
passing a constant d.c. current with Id.c. =+10 µA and Id.c. =�10 µA along the Hall bar, respectively, at 1.9 K. c, Current-induced magnetization switching in
the Hall bar device at 1.9 K in the presence of a constant in-plane external magnetic field with By =+0.6T and By =�0.6T, respectively. Inset: Expanded
scale to show the hysteresis windows. d, Phase diagram of the magnetization state in the presence of an in-plane external magnetic field By and a d.c.
current Id.c.. The dashed lines and symbols (obtained from experiments) represent switching boundaries between the di�erent states. In all panels, the
symbol " means Mz>0 and # means Mz<0, not Mz=±MS.

field By gradually changes from �3 T to 3 T, indicating that
the z-component magnetization Mz switches from �z to +z . In
contrast, when Id.c. =�10µA, the AHE resistance reverses sign (red
circles in Fig. 2b) and Mz varies from +z to �z as By is swept
from �3T to 3T. It should be noted that in both cases the AHE
resistance hysteresis loops agree well with our proposed scenario.
At the same time, when we scan the d.c. current Id.c. at a given fixed
magnetic field, we also observe similar magnetization switching
behaviour: the AHE resistance RAHE changes from negative to
positive for By = +0.6 T (blue squares in Fig. 2c), but reverses
its evolution trend, that is, changes from positive to negative,
for By = �0.6 T (red circles in Fig. 2c). For this case, the small
hysteresis window in RAHE is clearly visible on an expanded scale
as shown in the inset of Fig. 2c. Consequently, both the (Id.c.-fixed,
By-driven) and the (By-fixed, Id.c.-driven) magnetization switching
behaviours clearly demonstrate that the magnetization can be
e�ectively manipulated by the current-induced SOT in our TI/Cr-
doped TI bilayer heterostructure. We summarize these switching
behaviours in the phase diagram in Fig. 2d. For the four corner
panels in Fig. 2d where the field value By and Id.c. are large, the
magnetization state is deterministic; however, in the central panel
where By and Id.c. are small, bothmagnetization states, up and down,
are possible; this behaviour agrees with the hysteresis windows, as
shown in Fig. 2b,c, where in the low-By and small-Id.c. region the
two magnetization states are both allowed. On the basis of this
phase diagram, it can be clearly seen that the magnetization can
be easily switched with only tens of micro-amperes of d.c. current

(that is, below 8.9⇥104 A cm�2 in current density Jd.c.), suggesting
that the current-induced SOT in our TI/Cr-doped TI bilayer
heterostructure is quite e�cient. The temperature dependence of
the critical switching current density and the anisotropy field can
be found in Supplementary Section 7.

Second-harmonic analysis of the AHE resistance. To quantita-
tively analyse the current-induced SOT in the TI/Cr-doped TI
bilayer system, we carried out harmonic measurements of the AHE
resistance to calibrate the e�ective spin–orbit field BSO arising from
the SOT. By sending an a.c. current, Ia.c. (t)= I 0sin(!t), into the
Hall bar device, the alternating e�ective field, Be� (t)=BSOsin(!t),
causes the magnetization M to oscillate around its equilibrium
position, which gives rise to a second-harmonic AHE resistance
(Supplementary Section 2): R2!

AHE = � 1
2 I0dRAHE/dI . The second-

harmonic AHE resistance R2!
AHE contains information of the e�ective

field BSO and has been used as an e�ective method to quantify
it4,5. Here we introduce two di�erent ways to measure this e�ective
field by the second-harmonic method4, namely, one is to sweep the
external magnetic field to large values, and the other one is to rotate
the external magnetic field direction while keeping its magnitude
fixed. Both ways give quantitatively the same e�ective field BSO for
a given a.c. current as discussed in detail below.

In Fig. 3 we show the second-harmonic AHE resistance R2!
AHE

as a function of the in-plane external magnetic field when the
input a.c. current is given as Ia.c. (t)= I 0sin(!t), where I0 =2µA and
!=15.8Hz are used. When the in-plane external magnetic field is
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Figure 2 | Magnetization switching due to the SOT induced by an in-plane d.c. current. a, Schematic of the four stable magnetization states (panels 1–4)
when passing a large d.c. current, Id.c., and applying an in-plane external magnetic field, By, in the ±y directions. The e�ective spin–orbit field BSO induced
by the d.c. current and the anisotropy field BK are both considered. b, The AHE resistance RAHE as a function of the in-plane external magnetic field when
passing a constant d.c. current with Id.c. =+10 µA and Id.c. =�10 µA along the Hall bar, respectively, at 1.9 K. c, Current-induced magnetization switching in
the Hall bar device at 1.9 K in the presence of a constant in-plane external magnetic field with By =+0.6T and By =�0.6T, respectively. Inset: Expanded
scale to show the hysteresis windows. d, Phase diagram of the magnetization state in the presence of an in-plane external magnetic field By and a d.c.
current Id.c.. The dashed lines and symbols (obtained from experiments) represent switching boundaries between the di�erent states. In all panels, the
symbol " means Mz>0 and # means Mz<0, not Mz=±MS.

field By gradually changes from �3 T to 3 T, indicating that
the z-component magnetization Mz switches from �z to +z . In
contrast, when Id.c. =�10µA, the AHE resistance reverses sign (red
circles in Fig. 2b) and Mz varies from +z to �z as By is swept
from �3T to 3T. It should be noted that in both cases the AHE
resistance hysteresis loops agree well with our proposed scenario.
At the same time, when we scan the d.c. current Id.c. at a given fixed
magnetic field, we also observe similar magnetization switching
behaviour: the AHE resistance RAHE changes from negative to
positive for By = +0.6 T (blue squares in Fig. 2c), but reverses
its evolution trend, that is, changes from positive to negative,
for By = �0.6 T (red circles in Fig. 2c). For this case, the small
hysteresis window in RAHE is clearly visible on an expanded scale
as shown in the inset of Fig. 2c. Consequently, both the (Id.c.-fixed,
By-driven) and the (By-fixed, Id.c.-driven) magnetization switching
behaviours clearly demonstrate that the magnetization can be
e�ectively manipulated by the current-induced SOT in our TI/Cr-
doped TI bilayer heterostructure. We summarize these switching
behaviours in the phase diagram in Fig. 2d. For the four corner
panels in Fig. 2d where the field value By and Id.c. are large, the
magnetization state is deterministic; however, in the central panel
where By and Id.c. are small, bothmagnetization states, up and down,
are possible; this behaviour agrees with the hysteresis windows, as
shown in Fig. 2b,c, where in the low-By and small-Id.c. region the
two magnetization states are both allowed. On the basis of this
phase diagram, it can be clearly seen that the magnetization can
be easily switched with only tens of micro-amperes of d.c. current

(that is, below 8.9⇥104 A cm�2 in current density Jd.c.), suggesting
that the current-induced SOT in our TI/Cr-doped TI bilayer
heterostructure is quite e�cient. The temperature dependence of
the critical switching current density and the anisotropy field can
be found in Supplementary Section 7.

Second-harmonic analysis of the AHE resistance. To quantita-
tively analyse the current-induced SOT in the TI/Cr-doped TI
bilayer system, we carried out harmonic measurements of the AHE
resistance to calibrate the e�ective spin–orbit field BSO arising from
the SOT. By sending an a.c. current, Ia.c. (t)= I 0sin(!t), into the
Hall bar device, the alternating e�ective field, Be� (t)=BSOsin(!t),
causes the magnetization M to oscillate around its equilibrium
position, which gives rise to a second-harmonic AHE resistance
(Supplementary Section 2): R2!

AHE = � 1
2 I0dRAHE/dI . The second-

harmonic AHE resistance R2!
AHE contains information of the e�ective

field BSO and has been used as an e�ective method to quantify
it4,5. Here we introduce two di�erent ways to measure this e�ective
field by the second-harmonic method4, namely, one is to sweep the
external magnetic field to large values, and the other one is to rotate
the external magnetic field direction while keeping its magnitude
fixed. Both ways give quantitatively the same e�ective field BSO for
a given a.c. current as discussed in detail below.

In Fig. 3 we show the second-harmonic AHE resistance R2!
AHE

as a function of the in-plane external magnetic field when the
input a.c. current is given as Ia.c. (t)= I 0sin(!t), where I0 =2µA and
!=15.8Hz are used. When the in-plane external magnetic field is

NATUREMATERIALS | VOL 13 | JULY 2014 | www.nature.com/naturematerials 701

© 2014 Macmillan Publishers Limited. All rights reserved

Fan et al., Nature Mat. (2014)

2nd-harmonic AHE measurement of the 
effective spin Hall angle: tan ✓SH > 102



Local exchange coupling:

Charge pumping by magnetic dynamics:

Electronic chiral mode bound to a magnetic DW
• Free-energy density

• Domain-wall profile

• Soft variables are provided by the 
zero-mode amplitudes        and 

• Dirac Hamiltonian

• Charge response

• Hall conductance
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Magnetic torques
Torque is governed by the helical locking of spin and current:

which precisely reproduces the nondissipative sector of the Onsager-
reciprocal torque/pumping structure

The total current    consists of the dynamics-induced transport 
(Hall) and texture-induced equilibrium (persistent) contributions:
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Charge pumping along a domain wall
The magnetic dynamics redistributes charges between the gapless 
chiral modes and the adjacent gapped regions:

The domain-wall dynamics thus pumps current along the chiral 
mode (“squeezing” it out of the gapped quantum-Hall regions)
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Onsager-reciprocal torque

The coupled dynamics of the canonically conjugate pair

realizes a damped analog of the Josephson junction, whose 
equilibrium phase can be arbitrarily controlled by the applied voltage 
and magnetic field:
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Summary
Universal scaling functions for the orbital magnetization (the three 
spin components are contained in the out-of-plane spin and orbital 
magnetizations), leading to DMI and         ME effect

Zeroth Landau level and spin Hall phenomenology encapsulate the 
essential equilibrium and nonequilibrium magnetoelectric 
properties

Magnetic domain walls bind electronic chiral modes, thus imprinting 
reconfigurable interconnects, which could be “loaded” by a voltage 
bias, microwaves, and thermal gradients

E · n

YT and Loss, PRL (2012)
Pesin and MacDonald, PRL (2013)

YT and Bender, PRB (2014)
Fan et al., Nature Mat. (2014)

YT, Pesin, and Loss, PRB (2015)


