ISSP Spintronics and Mesoscopics 2015 Anomalous Charge and Spin Hall Effects

Allan MacDonald - University of Texas at Austin Anna Pertsova, Carlo Canali - LNU Kalmar Sweden Massoud Masir - University of Texas at Austin

Quantum Hall Effect (Insulators)

Intrinsic Charge and Spin Hall Effects and SOITs

Integer Quantum Hall Effect

Fractional Quantum Hall Effect

Incompressible States & Streda Formula

Quantized Hall Conductance in a Two-Dimensional Periodic Potential

D. J. Thouless, M. Kohmoto,^(a) M. P. Nightingale, and M. den Nijs Department of Physics, University of Washington, Seattle, Washington 98195 (Received 30 April 1982)

$$\sigma_{\rm H} = \frac{ie^2}{2\pi h} \sum \int d^2k \int d^2r \left(\frac{\partial u^*}{\partial k_1} \frac{\partial u}{\partial k_2} - \frac{\partial u^*}{\partial k_2} \frac{\partial u}{\partial k_1} \right)$$

Berry
Curvature
Chern Index

Joe Zwanziger Berkeley Ph.D. Thesis 1990

Dirac Points and Berry Curvature

PseudospinChirality !

$$\tau_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
$$\tau_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$$

Intersublattice Hopping

Model for a Quantum Hall Effect without Landau Levels: Condensed-Matter Realization of the "Parity Anomaly"

F. D. M. Haldane

Department of Physics, University of California, San Diego, La Jolla, California 92093 (Received 16 September 1987)

Bilayer Graphene Ps Ferromagnet

Quantum Hall Effect of TI Thin Film Surface States

<u>"To gain something one must lose everything"</u>

Qi, Wu, Zhang PRB (2008)

Microscopic Model B=0

*sp*³ TB model with parameters fit to DFT [Kobayashi, PRB **84**, 205424 (2011)]

Pertsova & Canali LNU - Kalmar NJP 16, 063022 (2014)

Side Wall States

- Consider a bar, finite in x and z but infinite in y direction: two crystal facets are present, for instance (111) (top and bottom surfaces along QL growth) and (110) (side walls)
- (111) surface is well known
- What the side wall states look like if the surfaces were infinite? \rightarrow look at Dirac cone on ($\overline{1}10$) surface

Anistoropic Dirac Cones

Side Wall Localization

Top Surface 2DEG with PMA

(111) surface, no exchange field (111) surface, exchange field 0.1eV along z axis

Side Wall 2DEG with PMA

Ribbon at B=0

Ribbon at B=0

Ribbon with Broken TR

Counter-Propagating Edge Channels

B=93.6T, l_B=2.58 nm, L=124 nm

Disorder on the Side Wall

Quantum Anomalous Hall Effect Materials by Design

- Quasi-2D Systems (TI surface states, graphene, ...)
- Strong SO Fermi Level
 Near Time-Reversal Invariant Point
- Ternary Chalcogenides ?

Quantum Hall Effect (Insulators)

Intrinsic Charge and Spin Hall Effects and SOITs

Heavy Metal/ Ferromagnet Bilayers (Structural Inversion Assymetry)

Conceptual Picture of LL Equation Torques

$$ec{ au}=\hbar\dot{ec{s}}=i[\mathcal{H},ec{s}]=ec{s} imesec{H}_{eff}$$

$$\vec{T} = \sum_{\alpha} f_{FD}(\epsilon_{\alpha}) \left[\langle \psi_{\alpha} | \, \vec{s} \times \vec{\Delta} \, | \psi_{\alpha} \rangle + \frac{\hbar}{2m^2c^2} \langle \psi_{\alpha} | \vec{\nabla} V \times \vec{p} \times \vec{s} | \psi_{\alpha} \rangle \right]$$

SOIT in bulk (Ga, Mn)As

Manchon & Zhang PRB 79 (2009)

Garate & AHM PRB 80 (2009)

Chernyshev *et al.* Nat. Phys. 5 (2009)

Sinova *et al.* arXiv:1306.1893

Spin Hall Effect

Spin-Orbit Torques and Edge States

Quantum Hall Effect (Insulators)

Intrinsic Charge and Spin Hall Effects and SOITs