

LUDWIG-MAXIMILIANS-

UNIVERSITÄT MÜNCHEN

Transport properties calculated by means of the Kubo formalism

Hubert Ebert, Diemo Ködderitzsch, Sergiy Mankovskyy, Kristina Chadova, and Sebastian Wimmer

Ludwig-Maximilians-Universität München, Department Chemie, Physikalische Chemie, Butenandtstrasse 5-13, 81377 München, Germany

Outline

- Introduction
- Kubo-Středa vs. Kubo-Bastin
- Kubo vs. Boltzmann formalism
- Symmetry predicted properties
- Inclusion of temperature
- Summary and outlook

SPR: Dirac equation within LSDA

$$iggl[rac{\hbar}{i} cec{lpha} \cdot ec{
abla} + eta m c^2 + ar{V}(ec{r}) + \underbrace{eta ec{\sigma} \cdot ec{B}_{ ext{eff}}(ec{r})}_{V_{ ext{spin}}(ec{r})} iggr] \Psi(ec{r}, E) = E \, \Psi(ec{r}, E)$$

KKR: Green function via multiple scattering theory

$$egin{aligned} G^+(ec{r},ec{r}',E) &=& \sum_{\Lambda\Lambda'} Z_\Lambda(ec{r},E) \, au_{\Lambda\Lambda'}^{nm}(E) \, Z_\Lambda^ imes(ec{r}',E) \ & -\delta_{nm} \sum_\Lambda Z_\Lambda(ec{r}_<,E) \, J_\Lambda^ imes(ec{r}_>,E) \end{aligned}$$

CPA: Coherent potential approximation for disorder

Residual resistivity (T=0K)

 $Ag_{x}Pd_{1-x}$

Implementation within KKR-CPA

$$\begin{split} \tilde{\sigma}_{\mu\nu} &= -\frac{4m^2}{\pi\hbar^3\Omega} \left\{ \sum_{\alpha,\beta} \sum_{\Lambda_1,\Lambda_2 \atop \Lambda_3,\Lambda_4} c^{\alpha} c^{\beta} \tilde{J}^{\alpha\mu}_{\Lambda_4,\Lambda_1} \left(\underbrace{[1-\chi\omega]^{-1}}_{\text{vertex correction}} \chi \right)_{\Lambda_1,\Lambda_2 \atop \Lambda_3,\Lambda_4} \tilde{J}^{\beta\nu}_{\Lambda_2,\Lambda_3} \right. \\ &+ \sum_{\alpha} \sum_{\Lambda_1,\Lambda_2 \atop \Lambda_3,\Lambda_4} c^{\alpha} \tilde{J}^{\alpha\mu}_{\Lambda_4,\Lambda_1} \tau^{\text{CPA},00}_{\Lambda_1,\Lambda_2} J^{\alpha\nu}_{\Lambda_2,\Lambda_3} \tau^{\text{CPA},00}_{\Lambda_3,\Lambda_4} \right\} \end{split}$$

 $\Lambda = (\kappa, \mu)$ relativistic quantum numbers Vertex corrections (VC) $\langle jG \rangle \langle jG \rangle \rightarrow \langle jGjG \rangle$ account for scattering-in processes

Butler, PRB **31**, 3260 (1985) (non-relativistic) Banhart *et al.*, SSC **77**, 107 (1991) (fully-relativistic) Turek *et al.*, PRB **65**, 125101 (2002) (LMTO-CPA)

See also: Velicky, PR 184, 614 (1969)

Kubo-Středa vs. Kubo-Bastin approach

KKR-CPA results based on Kubo-Středa equation

Expt.: Matveev *et al.*, Fiz. Met. Metalloved **53**, 34 (1982) Theo.: Lowitzer *et al.*, PRL **105**, 266604 (2010)

KKR-CPA results based on Kubo-Středa equation

Lowitzer et al., PRL 106, 056601 (2011)

Guo *et al.*, PRL **100**, 096401 (2008) Guo, JAP **105**, 07C701 (2009) Yao *et al.*, PRL **95**, 156601 (2005)

intrinsic SHE of pure elements

Expt.: Jen et al., JAP 76, 5782 (1994)

- No direct relation between AHC and ANC as functions of *x*
- AHC shows sign change, while ANC does not
- ANC: Maximum at x \approx 0.2 in line with behaviour of ρ_{iso} , AMR ratio & S_{xx}

S. Wimmer, D. Ködderitzsch, and H. Ebert, Phys. Rev. B 89, 161101(R) (2014)

LUDWIG-

LMU

S. Wimmer, D. Ködderitzsch, K. Chadova, and H. Ebert, Phys. Rev. B 88, 201108(R) (2013)

LUDWIG-

LMU

NPSMP2015, Workshop, Hubert Ebert

11

- numerical difficulties (energy derivative)
- integral over δ -function like terms

integration in the complex plane

inclusion of vertex corrections — numerical effort

Similar approach and implementation within TB-LMTO I Turek, J Kudrnovský and V Drchal, PRB **89**, 064405 (2014)

LUDWIG-MAXIMILIANS-

UNIVERSITÄT MÜNCHEN

KKR-CPA results based on Bastin and Kubo-Středa equation (numerical test for the equivalency)

Kubo-Středa: S.Lowitzer, D.Ködderitzsch, H.Ebert, PRL **105**, 266604 (2010)

KKR-CPA results based on Bastin and Kubo-Středa equation (numerical test for the equivalency)

Kubo vs. Boltzmann formalism

Kubo-Greenwood equation within KKR-CPA

$$\tilde{\sigma}^{1}_{\mu\nu} = \frac{-4m^2}{\pi\hbar^3\Omega} \sum_{\alpha,\beta} c^{\alpha}c^{\beta} \sum_{K,K'} \tilde{J}^{\alpha\mu}_{K} \left(\left[1 - \chi w \right]^{-1} \chi \right)_{KK'} \tilde{J}^{\beta\nu}_{K'}$$

Neglecting the **vertex corrections** gives **Boltzmann equation without scattering-in term**

$$\sigma^{
m NVC}_{\mu
u}(arepsilon) = rac{e^2}{(2\pi)^3} \, \int_arepsilon rac{dS_{ec k}}{\hbar v_{ec k}} v^\mu_{ec k} v^
u_{ec k} au^B_{ec k} \, .$$

Boltzmann equation including scattering-in term

$$\sigma_{\mu
u}(arepsilon_F) = e^2 \sum_{ec{k},ec{k'}} v^{\mu}_{ec{k}} \left[1 - au^B P
ight]^{-1}_{ec{k}ec{k'}} v^{
u}_{ec{k'}} au^B_{ec{k'}} \,\delta(arepsilon_F - arepsilon_{ec{k'}})$$

Inverse lifetime

Butler, PRB 31, 3260 (1985)

Ferromagnetic host doped with 3*d* impurities with concentration of 1 at.%

	Approach	Geometry	SOC	group
Method A	Boltzmann	Full potential	Pauli	Jülich (Blügel)
Method B	Boltzmann	ASA	Dirac	Halle (I. Mertig)
Method C	Kubo	ASA	Dirac	Munich (H. Ebert)

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

LMU

Paramagnetic host doped with 3*d* impurities with concentration of 1 at. %

	Approach	Geometry	SOC	group
Method A	Boltzmann	Full potential	Pauli	Jülich (Blügel)
Method B	Boltzmann	ASA	Dirac	Halle (I. Mertig)
Method C	Kubo	ASA	Dirac	Munich (H. Ebert)

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

LMU

Contributions to the incoherent part of the conductivity tensor

No vertex corrections for the Fermi sea term !

Contributions to the incoherent part of the conductivity tensor

Incoherent part (extrinsic)

No vertex corrections for the Fermi sea term !

Comparison of results for varying concentration

longitudinal conductivity $\sigma_{xx} imes x$

Boltzmann-based calculations: Gradhand, Fedorov, Mertig, unpublished (2013)

Symmetry predicted properties

$$\sigma_{ij} = \tau_{\hat{j}_i \hat{j}_j}(\omega, \vec{H}) = \int_0^\infty dt \ e^{-i\omega t} \int_0^\beta d\lambda \left(\rho(\vec{H}) \hat{j}_j \hat{j}_i (t + i\hbar\lambda; \vec{H}) \right)$$

for unitary operators *u*:

$$\sigma_{ij} = \sum_{kl} \sigma_{kl} D(P_R)_{ki} D(P_R)_{lj}$$

for anti-unitary operators a:

$$\sigma_{ij} = \sum_{kl} \sigma_{lk} D(P_R)^*_{ki} D(P_R)^*_{lj}$$

Pseudoalgorithm

- determine symmetry of system
- loop over symmetry operations
 - set up system of linear eqs. in elements $\{\sigma_{ij}\}$
- solution gives restrictions
 - element is linear combination of other elements
 - element is its negative
 - \rightarrow element is zero

Only the magnetic Laue group has to be considered

same transformation behavior for thermal transport

W. H. Kleiner, Phys. Rev. 142, 318 (1966)

Results obtained by analytic computation using computer algebra system (CAS)

Non-magnetic materials

Magnetic materials

magnetic Laue group	$\underline{ au}'$	<u></u>	magnetic Laue group	$\underline{\tau}'$	<u></u>
$\overline{1}1'$	$\begin{pmatrix} \tau_{xx} & \tau_{yx} & \tau_{zx} \\ \tau_{xy} & \tau_{yy} & \tau_{zy} \\ \tau_{xz} & \tau_{yz} & \tau_{zz} \end{pmatrix}$	$\begin{pmatrix} \sigma_{xx} & \sigma_{xy} & \sigma_{xz} \\ \sigma_{xy} & \sigma_{yy} & \sigma_{yz} \\ \sigma_{xz} & \sigma_{yz} & \sigma_{zz} \end{pmatrix}$	2'/m'	$\begin{pmatrix} \tau_{xx} & -\tau_{yx} & \tau_{zx} \\ -\tau_{xy} & \tau_{yy} & -\tau_{zy} \\ \tau_{xz} & -\tau_{yz} & \tau_{zz} \end{pmatrix}$	$\begin{pmatrix} \sigma_{xx} & \sigma_{xy} & \sigma_{xz} \\ -\sigma_{xy} & \sigma_{yy} & \sigma_{yz} \\ \sigma_{xz} & -\sigma_{yz} & \sigma_{zz} \end{pmatrix}$
2/m1'	$\begin{pmatrix} \tau_{xx} & 0 & \tau_{zx} \\ 0 & \tau_{yy} & 0 \\ \tau_{xz} & 0 & \tau_{zz} \end{pmatrix}$	$ \begin{pmatrix} \sigma_{xx} & 0 & \sigma_{xz} \\ 0 & \sigma_{yy} & 0 \\ \sigma_{xz} & 0 & \sigma_{zz} \end{pmatrix} $	m'm'm	$\begin{pmatrix} \tau_{xx} & -\tau_{yx} & 0\\ -\tau_{xy} & \tau_{yy} & 0\\ 0 & 0 & \tau_{zz} \end{pmatrix}$	$\begin{pmatrix} \sigma_{xx} & \sigma_{xy} & 0\\ -\sigma_{xy} & \sigma_{yy} & 0\\ 0 & 0 & \sigma_{zz} \end{pmatrix}$
mmm1'	$\begin{pmatrix} \tau_{xx} & 0 & 0 \\ 0 & \tau_{yy} & 0 \\ 0 & 0 & \tau_{yy} \end{pmatrix}$	$\begin{pmatrix} \sigma_{xx} & 0 & 0 \\ 0 & \sigma_{yy} & 0 \\ 0 & 0 & \sigma_{yy} \end{pmatrix}$	4'/m	$\begin{pmatrix} \tau_{yy} & -\tau_{xy} & 0\\ -\tau_{yx} & \tau_{xx} & 0\\ 0 & 0 & \tau_{zz} \end{pmatrix}$	$\begin{pmatrix} \sigma_{xx} & 0 & 0\\ 0 & \sigma_{xx} & 0\\ 0 & 0 & \sigma_{zz} \end{pmatrix}$
$\bar{3}1', 4/m1', 6/m1'$	$\begin{pmatrix} \tau_{xx} & -\tau_{xy} & 0 \\ \tau_{xy} & \tau_{xx} & 0 \end{pmatrix}$	$\begin{pmatrix} \sigma_{xx} & 0 & 0\\ 0 & \sigma_{xx} & 0 \end{pmatrix}$	4'/mm'm	$\begin{pmatrix} \tau_{xx} & -\tau_{xy} & 0\\ -\tau_{xy} & \tau_{xx} & 0\\ 0 & 0 & \tau_{zz} \end{pmatrix}$	$\begin{pmatrix} \sigma_{xx} & 0 & 0\\ 0 & \sigma_{xx} & 0\\ 0 & 0 & \sigma_{zz} \end{pmatrix}$
$\bar{3}1m1' \ \bar{3}m11' \ 4/mmm1' \ 6/mmm1'$	$\begin{pmatrix} 0 & 0 & \tau_{zz} \end{pmatrix}$ $\begin{pmatrix} \tau_{xx} & 0 & 0 \\ 0 & \tau_{zz} & 0 \end{pmatrix}$	$\begin{pmatrix} 0 & 0 & \sigma_{zz} \end{pmatrix}$ $\begin{pmatrix} \sigma_{xx} & 0 & 0 \\ 0 & \sigma_{xx} & 0 \end{pmatrix}$	4'/mmm'	$\begin{pmatrix} \tau_{yy} & 0 & 0\\ 0 & \tau_{xx} & 0\\ 0 & 0 & \tau_{zz} \end{pmatrix}$	$\begin{pmatrix} \sigma_{xx} & 0 & 0 \\ 0 & \sigma_{xx} & 0 \\ 0 & 0 & \sigma \end{pmatrix}$
	$ \begin{pmatrix} 0 & \tau_{xx} & 0 \\ 0 & 0 & \tau_{zz} \end{pmatrix} $ $ \begin{pmatrix} \tau_{xx} & 0 & 0 \end{pmatrix} $	$ \begin{pmatrix} 0 & 0 \\ 0 & 0 & \sigma_{zz} \end{pmatrix} $ $ \begin{pmatrix} \sigma_{xx} & 0 & 0 \end{pmatrix} $	$\bar{3}1m', m'1, 4/mm'm', 6/mm'm'$	$\begin{pmatrix} \tau_{xx} & \tau_{xy} & 0\\ -\tau_{xy} & \tau_{xx} & 0\\ 0 & 0 & \tau_{zz} \end{pmatrix}$	$\begin{pmatrix} \sigma_{xx} & \sigma_{xy} & 0\\ -\sigma_{xy} & \sigma_{xx} & 0\\ 0 & 0 & \sigma_{zz} \end{pmatrix}$
m31', m3m1'	$ \left(\begin{array}{ccc} 0 & \tau_{xx} & 0\\ 0 & 0 & \tau_{xx} \end{array}\right) $	$ \left(\begin{array}{ccc} 0 & \sigma_{xx} & 0\\ 0 & 0 & \sigma_{xx} \end{array}\right) $	6'/m'	$\begin{pmatrix} \tau_{xx} & -\tau_{xy} & 0\\ \tau_{xy} & \tau_{xx} & 0\\ 0 & 0 & \tau_{zz} \end{pmatrix}$	$\begin{pmatrix} \sigma_{xx} & \sigma & \sigma \\ 0 & \sigma_{xx} & 0 \\ 0 & 0 & \sigma_{zz} \end{pmatrix}$
Thermo-electric response tenso	al f		$6^{\prime}/m^{\prime}m^{\prime}m,6^{\prime}/m^{\prime}mm^{\prime}$	$\begin{pmatrix} \tau_{xx} & 0 & 0 \\ 0 & \tau_{xx} & 0 \\ 0 & 0 & \tau_{zz} \end{pmatrix}$	$ \begin{pmatrix} \sigma_{xx} & 0 & 0 \\ 0 & \sigma_{xx} & 0 \\ 0 & 0 & \sigma_{zz} \end{pmatrix} $
Electrical condu	uctivity tenso	or	$m\bar{3}m'$	$\begin{pmatrix} \tau_{xx} & 0 & 0 \\ 0 & \tau_{xx} & 0 \\ 0 & 0 & \tau_{xx} \end{pmatrix}$	$\begin{pmatrix} \sigma_{xx} & 0 & 0 \\ 0 & \sigma_{xx} & 0 \\ 0 & 0 & \sigma_{xx} \end{pmatrix}$

class a) contains time reversal T

class c) contains combined operations a=v T

LMU

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

- $Mn_{3}Ir a$ prototype non-collinear antiferromagnet
 - Cu₃Au structure
 - moments in (111) plane (Kagome lattice)
 - magnetic space group: R3m'

Prediction of anomalous Hall effect (AHE) and magneto-optical Kerr effect (MOKE)

based on analysis of electronic structure

Chen, Niu, and MacDonald, PRL **112**, 017205 (2014)

• Natural consequence of Kleiner's tables for the shape of the conductivity tensor

Kleiner, PR 142, 318 (1966)

Electrical conductivity tensor

$$\left(egin{array}{cccc} \sigma_{xx} & \sigma_{xy} & 0 \ -\sigma_{xy} & \sigma_{xx} & 0 \ 0 & 0 & \sigma_{zz} \end{array}
ight)$$

numerical work based on Kubo-Středa equation

z-direction along [111]

$$egin{aligned} \sigma_{\mu
u} &= rac{\hbar}{4\pi V} ext{Tr} \Big\langle \hat{J}_{\mu} (G^+ - G^-) \hat{j}_{
u} G^- - \hat{J}_{\mu} G^+ \hat{j}_{
u} (G^+ - G^-) \Big
angle_c \ &+ rac{e}{4\pi i V} ext{Tr} \Big\langle (G^+ - G^-) (\hat{r}_{\mu} \hat{J}_{
u} - \hat{r}_{
u} \hat{J}_{\mu}) \Big
angle_c \end{aligned}$$

• confirms tensor shape

Smrčka and Středa, JPC 10, 2153 (1977) Lowitzer *et al.*, PRL **105**, 266604 (2010)

• Anomalous Hall conductivity

275 (Ω cm)⁻¹ this work
218 (Ω cm)⁻¹ Chen *et al.* (2014)

comparable in size to Fe, Co, and Ni

LUDWIG-
MAXIMILIANS-
UNIVERSITÄT
MÜNCHENMn_Ir – optical conductivity and Kerr angle

$$\left(egin{array}{cccc} \sigma_{xx} & \sigma_{xy} & 0 \ -\sigma_{xy} & \sigma_{xx} & 0 \ 0 & 0 & \sigma_{zz} \end{array}
ight)$$

S. Wimmer, et al., unpublished (2015)

LMU

30

- spectra by superposition of site-resolved abs. coeffs. $\mu^n_{\vec{a}\lambda}(\omega)$
- incidence $ec{q}$ [111] vs. direction of $ec{m}_n$ (polar geometry)
 - same total absorption
 - in **both** cases XMCD (larger for polar geometry)
- **Results questions the XMCD sum rules**

Wimmer, et al., unpublished (2015)

$$\tau_{(\mathcal{T}_{k}\hat{j}_{i})\hat{j}_{j}}(\omega,\vec{H}) = \int_{0}^{\infty} dt \, e^{-i\omega t} \int_{0}^{\beta} d\lambda \left(\rho(\vec{H})\hat{j}_{j}\mathcal{T}_{k}\hat{j}_{i}(t+i\hbar\lambda;\vec{H})\right)$$

Using a relativistic spin polarization operator [1,2,3]: $\mathcal{T}_k = \beta \Sigma_k - \frac{\gamma_5 \Pi_k}{mc}$

for unitary operators *u*:

$$\sigma_{ij}^k = \sum_{lmn} D(P_R)_{li} D(P_R)_{mj} D(P_R)_{nk} \sigma_{lm}^n$$

for anti-unitary operators a:

$$\sigma^k_{ij} = -\sum_{lmn} D(P_R)_{li} D(P_R)_{mj} D(P_R)_{nk} \sigma'^n_{lm}$$

Only the magnetic Laue group has to be considered

S. Wimmer *et al.*, arXiv:1502.04947, PRB RC *accepted* (2015)

[1] V. Bargmann, E. P. Wigner, Proc. Natl. Acad. Sci. U.S.A. 34, 211 (1948)
[2] A. Vernes, B.L. Györffy, P. Weinberger, Phys. Rev. B 76, 012408 (2007)
[3] S. Lowitzer, Ködderitzsch, H. Ebert, Phys. Rev. B 82, 140402 (2010)

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

magnetic Laue group	<u></u>	$\underline{\sigma}^x$	$\underline{\sigma}^y$	$\underline{\sigma}^{z}$
m3̄m1′ e.g.: Au	$\begin{pmatrix} \sigma_{xx} & 0 & 0 \\ 0 & \sigma_{xx} & 0 \\ 0 & 0 & \sigma_{xx} \end{pmatrix}$	$\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & \sigma_{yz}^{x} \\ 0 - \sigma_{yz}^{x} & 0 \end{pmatrix}$	$\begin{pmatrix} 0 & 0 - \sigma_{yz}^x \\ 0 & 0 & 0 \\ \sigma_{yz}^x & 0 & 0 \end{pmatrix}$	$\begin{pmatrix} 0 & \sigma_{yz}^x & 0 \\ -\sigma_{yz}^x & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$
4/mm'm' e.g.: FM bcc Fe	$\begin{pmatrix} \sigma_{xx} & \sigma_{xy} & 0 \\ -\sigma_{xy} & \sigma_{xx} & 0 \\ 0 & 0 & \sigma_{zz} \end{pmatrix}$	$\begin{pmatrix} 0 & 0 & \sigma_{xz}^x \\ 0 & 0 & \sigma_{yz}^x \\ \sigma_{zx}^x & \sigma_{zy}^x & 0 \end{pmatrix}$	$\begin{pmatrix} 0 & 0 & -\sigma_{yz}^{x} \\ 0 & 0 & \sigma_{xz}^{x} \\ -\sigma_{zy}^{x} & \sigma_{zx}^{x} & 0 \end{pmatrix}$	$\begin{pmatrix} \sigma_{xx}^z & \sigma_{xy}^z & 0\\ -\sigma_{xy}^z & \sigma_{xx}^z & 0\\ 0 & 0 & \sigma_{zz}^z \end{pmatrix}$
4/m1'e.g.: Au ₄ Sc	$\begin{pmatrix} \sigma_{xx} & 0 & 0\\ 0 & \sigma_{xx} & 0\\ 0 & 0 & \sigma_{zz} \end{pmatrix}$	$\begin{pmatrix} 0 & 0 & \sigma_{xz}^x \\ 0 & 0 & \sigma_{yz}^x \\ \sigma_{zx}^x & \sigma_{zy}^x & 0 \end{pmatrix}$	$\begin{pmatrix} 0 & 0 & -\sigma_{yz}^x \\ 0 & 0 & \sigma_{xz}^x \\ -\sigma_{zy}^x & \sigma_{zx}^x & 0 \end{pmatrix}$	$\begin{pmatrix} \sigma_{xx}^{z} & \sigma_{xy}^{z} & 0 \\ -\sigma_{xy}^{z} & \sigma_{xx}^{z} & 0 \\ 0 & 0 & \sigma_{zz}^{z} \end{pmatrix}$
2/m1'e.g.: Pt ₃ Ge	$\begin{pmatrix} \sigma_{xx} \sigma_{xy} 0 \\ \sigma_{xy} \sigma_{yy} 0 \\ 0 0 \sigma_{zz} \end{pmatrix}$	$\begin{pmatrix} 0 & 0 & \sigma_{xz}^x \\ 0 & 0 & \sigma_{yz}^x \\ \sigma_{zx}^x & \sigma_{zy}^x & 0 \end{pmatrix}$	$\begin{pmatrix} 0 & 0 & \sigma_{xz}^y \\ 0 & 0 & \sigma_{yz}^y \\ \sigma_{zx}^y & \sigma_{zy}^y & 0 \end{pmatrix}$	$\begin{pmatrix} \sigma_{xx}^z \sigma_{xy}^z 0 \\ \sigma_{yx}^z \sigma_{yy}^z 0 \\ 0 0 \sigma_{zz}^z \end{pmatrix}$
		x	₹	x Z y
S. Wimmer <i>et al.</i> , arXiv:15 PRB RC <i>accepted</i> (2015)	602.04947,	Ē	$\vec{B} = 0$	Ē

2015-06-17

33

 \geq

paramagnetic

4/m1'

Spin Hall effect and *longitudinal* spin current in ferromagnet and paramagnet

caused by spin-orbit interaction

37

S. Wimmer *et al.*, (unpublished)

38

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

Inclusion of temperature

Phonon dispersion relation of Cu

G(k+q)

g*

Experiment: at *T* = 8*K* F. Reinert *et al., PRL* **91**, 186406 (2003)

Minar et al., JESRP 184, 91 (2011)

Calculated ARPES spectra

Representation of thermal vibrations

by temperature dependent, quasi-static, descrete set of dispacements

Multi-component CPA equations

$$\underline{\tau}_{\text{CPA}}^{nn} = \sum_{v=1}^{N_v} x_v \underline{\tau}_v^{nn}$$
$$\underline{\tau}_v^{nn} = \left[(\underline{t}_v)^{-1} - (\underline{t}_{\text{CPA}})^{-1} + (\underline{\tau}_{\text{CPA}}^{nn})^{-1} \right]^{-1}$$
$$\underline{\tau}_{\text{CPA}}^{nn} = \frac{1}{\Omega_{\text{BZ}}} \int_{\Omega_{\text{BZ}}} d^3k \left[(\underline{t}_{\text{CPA}})^{-1} - \underline{G}(\mathbf{k}, E) \right]^{-1}$$

LMU

Fixing the descrete set of dispacements

via temperature dependent root square displacement

root square displacement from Debye model

$$\langle u^2 \rangle_T = \frac{1}{4} \frac{3h^2}{\pi^2 M k_{\rm B} \Theta_D} \left[\frac{\Phi(\Theta_D/T)}{\Theta_D/T} + \frac{1}{4} \right]$$

root square displacement from phonon calculations

$$\langle u_{i,\mu}^2 \rangle_T = \frac{3\hbar}{2M_i} \int_0^\infty d\omega g_{i,\mu}(\omega) \frac{1}{\omega} \mathrm{coth} \frac{\hbar\omega}{2k_\mathrm{B}T}$$

Representation of thermal spin fluctuations by temperature dependent, quasi-static, descrete set of non-collinear spin orientations

Fitting of Weiss field parameter $\lim_{w \to w(T)} M(T) = M_{MC}(T)$

Comparison of different models of spin disorder

Combination of thermal lattice vibrations and spin fluctuations

- Transverse spin fluctuations important for spin disorder
- Impact of thermal lattice vibrations and spin fluctuations are not additive

LUDWIG-

MAXIMILIANS-UNIVERSITÄT MÜNCHEN

Fe bcc: resistivity vs temperature

Ni fcc: resistivity vs temperature

- Fe: MC M(T): magnetic fluctuation effect is overestimated
- Crucial role of M(T) dependence \rightarrow discrepancies between the resistivity results based on MC and experimental M(T)
- Ni: Longitudinal fluctuations should be taken into account near T_{c}

LUDWIG-

LMU

Gilbert damping for Ni

- Fe: comparable contributions of lattice vibrations and spin fluctuations
- Ni: main contribution from lattice vibrations

Gilbert damping: Temperature effects

Ni-rich $Ni_{1-x}Cu_x$ alloys

LUDWIG-

LMU

MAXIMILIANS-UNIVERSITÄT MÜNCHEN

- Pure Ni: conductivity-like behaviour for low temperatures
- Less than 1 % Cu strongly damp low temperature singularity
- With more than 5 % Cu the temperature dependence is nearly suppressed
- Expt: Bhagat and Lubitz, Phys. Rev. B **10**, 179, (1974)

MC: $M(T)/M_0$ for one Fe sublattice

Expt vs theory: resistivity vs T

- Monte Carlo simulations: Temperature dependent magnetization of AFM-aligned sublattices of Fe
- AFM state: Faster decrease of Fe sublattice magnetization (stronger spin fluctuations) → steeper increase of resistivity

LMU

FeRh, AFM: contributions

FeRh, FM: contributions

- FM state: Weak contribution to the resistivity from the scattering due to lattice vibrations.
- AFM state: stronger spin fluctuations
 - → steeper increase of resistivity

Fe(Rh,Fe), AFM: contributions

Fe(Rh,Fe), FM: contributions

- FM state: Weak effect of Fe impurities in Rh sublattice
- **AFM** state: **strong** effect of Fe impurities in Rh sublattice

FeRh, FM

• Main temperature effect: *lattice vibrations*

Expt: E. Mancini et al. J. Phys. D: Appl. Phys. 46 (2013) 245302

2H-Fe₀₂₈TaS₂: transport proprties

AHE vs T

LUDWIG-MAXIMILIANS-

UNIVERSITÄT MÜNCHEN

LMU

- Small contribution of spin fluctuations to the electrical resistivity
- AHE: increase of $\rho_{xv}(T)$ at low temperature due to phonon contribution
- AHE: Crucial effect of temperature induced magnetic disorder for $\rho_{y}(T)$

- Kubo-Středa vs. Kubo-Bastin
 - Numerical equivalency demonstrated
- Kubo vs. Boltzmann formalism
 - Coherent results in the dilute limit
- Symmetry predicted properties
 - New phenomena identified
- Inclusion of temperature
 - Description of thermal lattice vibrations and spin fluctuations via alloy analogy model

