Antiferromagnetic Skyrmions

Institute for Materials Research, Tohoku University, Japan

NPSMP-2015, U. of Tokyo, Kashiwa; June 16, 2015

Collaborators:

Nailul Hasan (Tohoku U.)

Joe Barker (Tohoku U.)

Grant Support:

Japan Society for the Promotion of Science

Intro: topological textures

Different soft mode(s)

skyrmionic spin texture:

Recent Progress: Single Skyrmions

Skyrmion motion induced by current (simulations)

J. Sampaio et.al, Nat. Nanotech. (2013)

Skyrmion Creation (Experiment)

N. Romming et.al, Science (2013)

Skyrmion Creation (simulations)

J. Iwasaki et.al, Nat. Nanotech. (2013)

Internal skyrmion dynamics at high currents

In a deformed skyrmion there are 2 centers: Topological and geometric

Their motion obeys different generalized Thiele's equations.

Internal Skyrmion Dynamics

Trajectories of skyrmion centers:

Internal Skyrmion Dynamics

Velocity of skyrmion's geometric center:

Thiele's equation with mass:

 $m\frac{d\vec{v}(t)}{dt} + \Gamma\alpha\vec{v}(t) - G\hat{z}\times\vec{v}(t) = \Gamma\beta\vec{j} - G\hat{z}\times\vec{j}$

Solution of Thiele's equation:

 $v_{||,\perp}(t) = Ae^{-\frac{t}{T(m)}}\cos\left(\omega(m)t + \phi\right)$

Skyrmions in Multilayers

Types of structures:

Multilayer skyrmions: thickness dependence

Skyrmions in Multilayers with interface DMI

Тор

D/D_c=3.33, n=25 (t=15 nm)

 R_{bottom} = 26 at.c., R_{top} =22 at.c.

Antiferromagnetic Skyrmions

Why AFM Skyrmions?

AFMs have no stray fields:

- Can be insulating, semiconducting, and metallic.
- Rich spin-wave phenomena.
- Dynamics due to current induced torques.
- Highly ordered spin textures: Skyrmions!

Texture Dynamics in AFMs

Antiferromagnet:

AFM equations:

$$\dot{\mathbf{n}} = (\gamma \mathbf{f}_m - G_1 \dot{\mathbf{m}}) \times \mathbf{n} + \eta \gamma (\mathbf{J} \cdot \nabla) \mathbf{n},$$

$$\dot{\mathbf{m}} = [\gamma \mathbf{f}_n - G_2 \dot{\mathbf{n}} + \beta \gamma (\mathbf{J} \cdot \nabla) \mathbf{n}] \times \mathbf{n} + T_{nl},$$

Damped harmonic oscillator:

$$M\ddot{r} + \Gamma\dot{r} + M\omega_0^2 r = F_J + F_{H_J}$$

ı veten, Qaiumzadeh, Tretiakov, Brataas, PRL (2013) Kim, Tserkovnyak, Tchernyshyov PRB (2014)

Large AFM Skyrmion

G-type antiferromagnet:

Winding number:

$$W = \frac{1}{4\pi} \int \! d^2 r \, \Omega \cdot \frac{\partial \Omega}{\partial x} \times \frac{\partial \Omega}{\partial y}$$

Small AFM Skyrmion

X

AFM Skyrmion Structure

Winding number:
$$W = \frac{1}{4\pi} \int d^2 r \,\Omega \cdot \frac{\partial \Omega}{\partial x} \times \frac{\partial \Omega}{\partial y}$$

Composite topological objects

Composite vortex DW: -1/2

AFM skyrmion:

Total topological charge is zero.

Skyrmion Radius vs. DMI

Large AFM/FM skyrmions described well by continuous model

AFM Skyrmion Structure at nonzero T

Temperature effects on AFM and FM Skyrmion radius:

Temperature Effects on AFM Skyrmion

Langevin LLG Approach

Landau-Lifshitz-Gilbert (LLG) equation:

$$\frac{\partial \vec{S}_i}{\partial t} = -\frac{\gamma_i}{(1+\alpha_i^2)} \left(\vec{S}_i \times \vec{H}_i + \alpha_i \vec{S}_i \times \vec{S}_i \times \vec{H}_i \right)$$

$$\vec{H}_i = -\frac{1}{\mu_s} \frac{\partial \mathcal{H}}{\partial \vec{S}_i} + \vec{\xi}_i$$

Stochastic process with the correlators:

 $\langle \vec{\xi_i}(t) \rangle = 0$

 $\langle \xi_{i,a}(t), \xi_{j,b}(t') \rangle = (2k_B T \alpha_i \mu_i / \gamma_i) \delta(|t - t'|) \delta_{ij} \delta_{ab}$

Thermal Effects on AFM Skyrmions

Skyrmion Radius vs. Temperature:

Velocity along the Current

FM skyrmion longitudinal velocity:

0.06

β

0.08

0.10

0.04

0.02

0.00

Velocity transverse to the Current

AFM Skyrmion Dynamics

AFM skyrmion quickly (~2ps) reaches terminal velocity

Current Induced Skyrmion Dynamics

Thiele's equation:

$$G \times (\mathbf{j} - \mathbf{v}) + \Gamma(\beta \mathbf{j} - \alpha \mathbf{v}) = 0$$

G - Gyrocoupling vector

 Γ - Dissipative tensor

FM Skyrmion velocity is given by

$$\begin{aligned} v_{||} &= \left(\frac{\beta}{\alpha} + \frac{\alpha - \beta}{\alpha^3 (D/G)^2 + \alpha}\right)j\\ v_{\perp} &= \frac{(\alpha - \beta)D/G}{1 + \alpha^2 (D/G)^2} \mathbf{z} \times \mathbf{j} \qquad \text{with } j = \frac{Pg\mu_B J}{2eM_s} \end{aligned}$$

Shows the relation between current and velocity

FM Skyrmion Equation of Motion

Equation of motion for FM skyrmion: $G \times \mathbf{v}(t) + \Gamma \alpha \mathbf{v}(t) = \mathbf{F}$

AFM Skyrmion Equation of Motion

For the other sublattice of AFM skyrmion:

AFM Skyrmion Equation of Motion

Motion of Deformed AFM Skyrmion

Big advantage: for high currents, even though skyrmion deforms – it still moves strictly parallel to the current!

Summary

- AFM skyrmions are stable objects. The effect of *Dzyaloshinskii-Moriya interaction* on the AFM skyrmion stability/radius were studied.
- Thermal effects on AFM skyrmions were studied. Diffusion constant for AFM skyrmions is larger than for FM skyrmions.
- Skyrmion dynamics in AFMs obeys generalized Thiele's equations for AFMs.

Japan Society for the Promotion of Science

> AFM skyrmions move only along the currrent.

