Perpendicular magnetic anisotropy induced by Rashba spin-orbit interaction

家田淳一 Jun'ichi leda

Advanced Science Research Center (ASRC), Japan Atomic Energy Agency (JAEA), Tokai, Japan

In collaboration with S. E. Barnes (U. Miami), S. Maekawa (ASRC, JAEA)

Outline

- Introduction
 - Rashba effects in Spintronics
- <u>Model</u>
 - Rashba mechanism of magnetic anisotropy
- Electric-Field Effect
 - Experiments and predictions
- <u>Summary</u>

Rashba Effect

$$H_{\rm R} = \frac{\alpha_{\rm R}}{\hbar} \mathbf{p} \cdot \left(\boldsymbol{\sigma} \times \hat{\mathbf{z}}\right)$$

Inversion symmetry breaking -> $E(\mathbf{k}, \uparrow) \neq E(-\mathbf{k}, \uparrow)$ Time reversal symmetry-> $E(\mathbf{k}, \uparrow) \neq E(\mathbf{k}, \downarrow)$

E. I. Rashba: Fiz. Teverd. Tela (Leningrad) 2 (1960) 1224; Y. A. Bychkov and E. I. Rashba: J. Phys., C 17 (1984) 6039.

physics of spin-orbit coupling penetrated into numerous branches of condensed matter physics

I guess that our paper became successful because it was one of the first, and timely, steps of this journey.

by E. I. Rashba from the editor blog of JETP Letters

Huge "Magnetic Field"

Rashba Splitting

Rashba splitting band:

$$\varepsilon_{\vec{k},\sigma} = \frac{\hbar^2}{2m} \left(\left| k_{\parallel} \right| - \sigma k_0 \right)^2 - E_{R}$$

Rashba in Spintronics

Non-equilibrium state: current, magnetization dynamics...

Aim

- Perpendicular Magnetic Anisotropy (PMA)
 - Indispensable properties for MRAM
 - Simple bit structure for efficient magnetization flips
 - High thermal stability (vs. superparamagnetism)
 - High density memory bit

Electric control of magnetism

We propose Rashba-induced PMA.

Question

How does the *in-plane* Rashba field lead to *PMA*?

Answer

Cooperation with the exchange interaction.

Rashba Field: **B**_R

$$_{\rm B}\mathbf{B}_{\rm R}$$
 $_{\rm R}$ $k_y, k_x,$

()

Ultrathin ferromagnetic film

Reinforcement

Model

• Ferromagnet with Rashba SOI:

$$H = \frac{\hbar^2}{2m} \left(k_x^2 + k_y^2 \right) - J_0 S \hat{\mathbf{m}} \cdot \boldsymbol{\sigma} + \boldsymbol{\alpha}_{\mathrm{R}} \left(k_y \boldsymbol{\sigma}_x - k_x \boldsymbol{\sigma}_y \right)$$

Magnetization (Order parameter)

Ultrathin ferromagnetic film

m sin cos , sin sin , cos

Rashba Field: **B**_R

$$_{\rm B}\mathbf{B}_{\rm R}$$
 $_{\rm R}$ $k_y, k_x, 0$

Rashba parameter: α_R

$$_{\rm R}$$
 $_{\rm SO}E_z$

$\alpha_{\rm R}$ & $\alpha_{\rm R}^2$ terms

• "Total" field (J_0 **S** in the *y*-*z* plane).

$$\mu_{\rm B} |\mathbf{B}_{\rm tot}| = \left[\left(J_0 S + \mu_{\rm B} B_{\rm R}^{y} \sin \theta \right)^2 + \left(\mu_{\rm B} B_{\rm R}^{y} \cos \theta \right)^2 + \left(\mu_{\rm B} B_{\rm R}^{x} \right)^2 \right]^{1/2}$$

$$\approx J_0 S + \frac{\alpha_{\rm R} k_x \sin \theta}{2 J_0 S} + \frac{1}{2} \frac{\alpha_{\rm R}^2}{J_0 S} \left(k_x^2 \cos^2 \theta + k_y^2 \right).$$
Fermi sea shift & exchange reinforcement (partial) Rashba splitting
$$B_{\rm R}^{y} \mathbf{Sin} \theta = B_{\rm R}^{y} \mathbf{Sin} \theta$$

Out-of-plane configuration

Energy gain due to reinforced exchange splitting (no energy gain from Rashba splitting)

In-plane configuration

Rashba fields go into exchange (B_R^x) and Rashba (B_R^y) splittings.

Rashba-PMA

Two interfaces interaction

MgO/FeB/MgO

Applied Physics Express 6 (2013) 073005

http://dx.doi.org/10.7567/APEX.6.073005

Voltage-Induced Magnetic Anisotropy Changes in an Ultrathin FeB Layer Sandwiched between Two MgO Layers

Takayuki Nozaki^{1,2}*, Kay Yakushiji^{1,2}, Shingo Tamaru¹, Masaki Sekine¹, Rie Matsumoto^{1,2}, Makoto Konoto^{1,2}, Hitoshi Kubota^{1,2}, Akio Fukushima^{1,2}, and Shinji Yuasa^{1,2}

(a)

Ru cap

MgO (1.5 nm) Fe₈₀B₂₀ (1.5 nm)

MgO (2.5 nm)

Fe (50 nm)

I/F/N tri-layer

• Depending on N-layer...

Rashba fields add

0

iii)

g

gating experiments distinguish the cases.

$MgO/Co_{16}Fe_{64}B_{20}/Ta(Ru)$

APPLIED PHYSICS LETTERS 103, 082410 (2013)

Opposite signs of voltage-induced perpendicular magnetic anisotropy change in CoFeB|MgO junctions with different underlayers

Yoichi Shiota,^{1,2} Frédéric Bonell,^{1,2} Shinji Miwa,^{1,2} Norikazu Mizuochi,¹ Teruya Shinjo,¹ and Yoshishige Suzuki^{1,2,a)}

<u>Summary</u>

- PMA mechanism due to Rashba effect
- Two energy gain processes:
 - Reinforced exchange splitting -> perp. MA
 - Residual Rashba splitting -> in-plane MA
- Magnetic anisotropy energy scales with Rashba energy E_R and can be changed by applied field *E*.

Ref.: Scientific Reports 4, 4105 (2014).