

Spintronics with Ferroelectrics

Evgeny Tsymbal

Department of Physics and Astronomy Nebraska Center for Materials and Nanoscience University of Nebraska-Lincoln

Ferroelectrics: Field Effect

Ferroelectric BaTiO₃

- Spontaneous electric polarization switchable by electric field
- Polar displacements ~ 0.1-0.2Å
- Perovskite structure
- Large polarization charge: $10 - 100 \ \mu C/cm^2 (\sim 0.1 - 1 \ e/a^2)$
- Polarization charge screening: "field effect". Effective electric fields up to 10 V/Å (1 GV/cm)
- Controlled by fields of ~ 1 MV/cm Three order in magnitude smaller!
- Non-volatile capability
- Control of spin-dependent properties relevant to spintronics

Ferroelectrics: Strain and Bonding

Ferroelectrically induced:

Interface strain effects

• Interface bonding effects

Ferroelectrics: Epitaxial Thin Films

- High quality epitaxial structures with nearly atomic precision interface control: PLD, MBE
- Epitaxial strain to stabilize polarization
- Stable and switchable polarization in sub nm thick films

HRTEM

Magnetoelectric Interfaces

Magnetic (Ferromagnetic, Ferrimagnetic, Antiferromagnetic)

Ferroelectric

- Strain mediated: Piezoelectricity & Magnetostriction or Piezomagnetism
- Electronically driven: Spin-polarized screening or interface bonding Effects of ferroelectric polarization on:
- Interface magnetization
- Magnetocrystalline surface anisotropy
- Interface magnetic order
- Curie temperature
- Electron and spin transmission across interfaces
- Exchange bias
- Spin waves

Surface Magnetoelectric Effect on Fe (001)

 $a_s \approx 2.4 \times 10^{-14} \text{ G cm}^2/\text{V}$

E = 1 V/nm -> $\Delta m \approx 2 \times 10^{-3} \mu_{\rm B}$ per Fe

- Electric field induces a surface magnetic moment
- Effect is small

Origin of Magnetoelectric Effect

Fe(001) Surface DOS

$$\sigma = \sigma^{\uparrow} + \sigma^{\downarrow}$$

$$\sigma^{\uparrow} = \varepsilon_{0} E \frac{n^{\uparrow}}{n}; \quad \sigma^{\downarrow} = \varepsilon_{0} E \frac{n^{\downarrow}}{n}$$

$$\Delta M = \mu_{B} \frac{\sigma^{\uparrow} - \sigma^{\downarrow}}{e} = \frac{\varepsilon_{0} E \mu_{B}}{e} \frac{n^{\uparrow} - n^{\downarrow}}{n^{\uparrow} + n^{\downarrow}}$$
Magnetoelectric coefficient:
$$\alpha_{s} = \frac{\mu_{B}}{ec^{2}} \frac{n^{\uparrow} - n^{\downarrow}}{n^{\uparrow} + n^{\downarrow}} = \frac{\mu_{B}}{ec^{2}} P$$

 $\mu_0 \Delta M = \alpha_s E$

- Fundamental limit for the linear ME effect
- Universal constant for half-metals: $\alpha_s = \frac{\mu_B}{ec^2} \approx 6.44 \times 10^{-14} \text{ Gcm}^2 / \text{ V}$ Duan et al., PRB **79**, R140403 (2009)

Ferroelectric Effect on Interface Magnetization

Niranjan et al, APL 95, 052501 (2009)

SrRuO₃

- Itinerant ferromagnet (~1 μ_B /f.u.)
- Curie temperature 160 K
- Perovskite structure
- Good lattice match to BaTiO₃
- Epitaxial strain to stabilize polarization (SrTiO₃ substrate)

 $\Delta m_{Ru} = 0.31 \mu_B$ $E_c \sim 0.1 V/nm$

Ferroelectric Effect on Interface Magnetization

Niranjan et al, APL 95, 052501 (2009)

 Change in the exchange splitting at the interface

Ferroelectric Effect on Interface Magnetization

Niranjan et al, APL 95, 052501 (2009)

Spin resolved density of states

 Change in the exchange splitting at the interface Stoner model for itinerant magnetism:

 $\Delta = Im$

I – Stoner exchange constant

$$\Delta = \frac{2\sqrt{\rho_F^2 I^2 - 1}}{\left|\rho_F'\right| I}$$

 Explains calculated change in exchange splitting with FE polarization reversal

Inducing Magnetism on a Non-Magnetic Surface

Sun et al., PRB 81, 064413 (2010)

Stoner criterion for itinerant magnetism

 $I\rho_F > 1$

Can we induce a surface magnetism by electric field ?

Electric-Field Induced Magnetism on a Pd (001) Surface

- Second-order phase transition
- Require very large electric fields which may be produced by an adjacent ferroelectric

 $\rho_F(E) = \rho_F + \alpha E$

Electric Field Effect on Magnetocrystalline Surface Anisotropy

> Electric field control of magnetization orientation

- Screening charge induced by electric field
 - \rightarrow Change in relative population of d-orbitals at the surface \rightarrow Change in surface magnetocrystalline anisotropy (MCA)

$$\Delta K = \beta_s E$$
 $\beta_s - VCMA$ coefficient

- Bulk magnetocrystalline anisotropy (MCA)
- Surface (interface) MCA
- Shape anisotropy

MCA energy determined by spin-orbit interaction:

$$H = \xi \mathbf{L} \cdot \mathbf{S}$$

In thin films:

$$\begin{split} & \mathsf{E}_{shape} \approx \mu_0 \mathsf{M}^2 \mathsf{cos}^2 \Theta & - \text{ volume} \\ & \mathsf{E}_{surface} \approx - \mathsf{K}_S \mathsf{cos}^2 \Theta & - \text{ surface} \end{split}$$

$$K \propto \sum_{o,u} \frac{\left| \left\langle o \left| L_z \right| u \right\rangle \right|^2 - \left| \left\langle o \left| L_x \right| u \right\rangle \right|^2}{\varepsilon_u - \varepsilon_o}$$

within 2nd order perturbation theory

sensitive to orbital population

Fe/MgO(100) Interface

Toggle Switching of Magnetization

□ Significant interest from industry

Ferroelectric Control of Magnetic Interface Anisotropy

Lukashev et al., JPCM 24, 226003 (2012)

 $K \approx 1.3 \text{ erg/cm}^2$ $K \approx 1.0 \text{ erg/cm}^2$

- Large perpendicular anisotropy
- Large change with polarization switching
- Effect due to the relative change in 3d orbitals occupation
- Consistent with Fe/MgO

 $E_c \sim 0.1 \text{ V/nm} \Rightarrow \beta_s \sim 3 \text{ pJ/Vm}$

y-z plane

VCMA effect enhanced by two orders in magnitude!

x-z plane

Magnetic perovskites: La_{1-x}A_xMnO₃ (A²⁺ = Ca, Sr, Ba)

Transition from FM to AFM order near x ~ 0.5

Electrostatic Doping of Magnetic Perovskites: La_{1-x}A_xMnO₃

Magnetic perovskites: La_{1-x}A_xMnO₃ (A²⁺ = Ca, Sr, Ba)

$La_{1-x}Sr_{x}MnO_{3}$

Changing magnetic order by "electrostatic doping" at an interface with a ferroelectric?

$$La_{0.5}Sr_{0.5}MnO_3$$

Transition from FM to AFM order near x ~ 0.5

Interface Electronic Structure of La_{0.5}Sr_{0.5}MnO₃

 Accumulation or depletion of electronic charge controls majority-spin e_g state population and thus magnetic order

Interface Magnetic Reconstruction

Burton et al., PRB 80, 174406 (2009)

 Change in the local magnetic order from FM to AFM induced by ferroelectric polarization reversal

Ferroelectric Tunnel Junction (FTJ)

Tunneling Electroresistance (TER) effect:
 resistive switching of FTJ at coercive electric field

Reliable FTJ Devices

Multiferroic Tunnel Junction (MFTJ)

Zhuravlev et al, APL 87, 222114 (2005); PRB 81, 104419 (2010)

Magnetic tunnel junction with a ferroelectric barrier

MFTJ = MTJ + FTJ

Ferromagnet

- MFTJ combines TMR with TER making a four-state resistive device
- Effect of ferroelectric polarization on transport spin polarization
- Multifunctional properties

SrRuO₃/BaTiO₃/SrRuO₃ Multiferroic Tunnel Junction (MFTJ)

Co-existence of TER and TMR

Velev et al., Nano Lett. 9, 427 (2009)

Four conductance states in SrRuO₃/BaTiO₃/SrRuO₃ MFTJ

G (10 ⁻⁷ e²/h)	↑ ↑	$\uparrow \downarrow$	TMR (%)
\rightarrow	3.76	0.83	350
~~	11.82	1.69	590
TER (%)	210	100	

K₁₁-resolved Transmission

- TMR selection rules for electronic transmission
- TER attenuation constant in the barrier

Ferroelectric Control of Spin Polarization

Pantel et al., Nature Mater. 11, 289 (2010)

- Coexistence of TMR and TER
- Change of TMR sign with ferroelectric polarization reversal

Magnetoelectrically Driven TER Effect

More than 20 fold change in resistance !

Electrically-Controlled Atomic Spin Valve

Layer and spin resolved density of states

 Polarization driven magnetic moment reversal acts as a spin valve enhancing dramatically resistance for antiparallel state

Experiments

Yin et al., Nature Mater. 12, 397 (2013)

A FFMI Meetator

 $\begin{array}{c} \text{La}_{0.5}\text{Ca}_{0.5}\text{MnO}_{3}\\ \text{~1nm} \end{array}$

Experimental Result: ~10,000% TER

Time (s)

with LCMO interlayer TER ~ 10,000%

without LCMO interlayer TER ~ 40% PFM data

 TER associated with FE polarization switching

- Effect is reversed when LCMO is deposited on bottom interface
- Reproducible switching behavior

Magnetoresistance

Consistent with the magnetic reconstruction mechanism

- Normal Metal: Ferroelectric polarization dependent resistance
- Ferromagnetic Metal: Ferroelectric polarization dependent spin-polarization

Band Bending across n-BaTiO₃

Liu et al., PRB 88, 165139 (2013)

Shottky or Ohmic contact depending on polarization orientation

Transmission

Liu et al., PRB 88, 165139 (2013)

10⁵ change in the interface resistance by switching ferroelectric polarization

Fermi Surface of SrRuO₃

- $SrRuO_3$ is a ferromagnet below 160K
- Spin-dependent electric band structure $(1.2\mu_B/f.u.)$

Majority spin

Minority spin

 Spin-dependent transmission is expected across SrRuO₃/n-BaTiO₃ interface

Transport Spin-Polarization

 Significant change in the transport spin-polarization with ferroelectric polarization reversal

Origin of Spin-Polarization Change

Liu et al., PRL 114, 046601 (2015) **A simple model:** Tunneling across a Schottky barrier

 κ - attenuation constant

similar to Slonczewski, PRB 39, 6995 (1989)

Fermi surface of SrRuO₃ Minority spin Majority spin

 $k_z^{\uparrow} \approx 0.079 \text{ Å}^{-1} \qquad k_z^{\downarrow} \approx 0.634 \text{ Å}^{-1}$

- Negative spin-polarization due to large minority-spin Fermi wave vector
- Change in the spin-polarization with ferroelectric polarization switching due to change in the barrier height
- Change in sign of the spin polarization for small electron doping

Conclusions

- Ferroelectric polarization provides a new degree of freedom to control materials properties relevant to spintronics
 - Interface magnetization
 - Interface magnetic order
 - Magnetocrystalline surface anisotropy
 - Electron and spin tunneling
 - Spin injection
- Switchable ferroelectric polarization at the interface with a magnetic metal forms a non-volatile spin-dependent state interesting for device applications

Acknowledgements

Theory:

U. Nebraska-Lincoln: J. D. Burton, Xiaohui Liu, Sitaram Jaswal U Puerto-Rico: Julian Veley East China Normal U.: Chun-Gang Duan Inst. Technology, India: Manish Niranjan U. Northern Iowa: Pavel Lukashev RAS, Moscow, Russia: Mikhail Zhuravlev ICTP, Trieste, Italy: Alexander Smogunov Erio Tosatti Adv. Sci. Res. Center, Japan: Sadamichi Maekawa

Experiment:

U. Nebraska: Alexei Gruverman Alexander Sinitskii Chang-Beom Eom U. Wisconsin: Penn State: YueWei Yin QiLi U. Sci. & Tech. China, Hefei: Xiao-Guang Li Oak Ridge National Laboratory: Young-Min Kim Albina Borisevich Stephen Pennycook Seoul Nat. U.: Sang Mo Yang Tae Won Noh

