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General properties of SF

Superconductor: attractive interaction = Magnetism: Bandsplitting
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[Fulde+Ferrel (1964); Larkin4+Ovchinnikov (1965)]
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Macroscopic wave function: A cos(2qr) or Ae'?9"

spin dependent pair wave function/supercurrent!

Superspintronics: Spintronic aspects of superconducting



Critical current oscillations

* Fulde, Ferrell (1964), Larkin, Ovchinnikov (1964)
Superconductor with exchange field H,, = inhomogeneous order parameter
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History of SF (some aspects...)
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(Some) Experimental progress since 2000
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Quasiclassical Theory
&
Boundary Conditions



The quasiclassical theory of inhomogeneous superconductors

General superconductors: Gorkov equations for matrix Greens function
[Note: GF is in general a matrix in Nambu-Keldysh-Spin-....-Space]

Y = (l//T Y ,I//I ,—l//?) [Gorkov (1957), Abrikosov (1958)]
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Contains full microscopic oscillations on scale of Fermi wavelength
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Realistic case: impurities, microscopic imperfections lead to random elastic scattering
- all interference effects ~exp(ik:x) are washed out



The quasiclassical theory of inhomogeneous superconductors
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Transport-like equation for the gc Greensfunction om - m

—id, +iv,V+X(%,8),G(V.,X,€) =0 j= ezNojd£<tr%3éK (VF,X,8)>

[Eilenberger (1968); Larkin, Ovchinnikov (1968)] current density
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Normalization condition (v;(\_/’F,fc,t,t')2 =1

angular average
Selfenergy contributions (phonons, impurities, Coulomb,...)

E.g. iph()_f) = A()_é) = ljd8<é(xavp ,8)> i"l’rmv()_é"c:) = L<é>

off —diag 2T Vg
Pairing potential Elastic impurity scattering

) ) ) ) V. V

Diffusive approximation [Usadel 1970] [=v, T < £ _F

A kT
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G(V,,X)=G(X)+V,G(¥)+... s o

Usadel equation (quantum diffusion equation) D= vi’L’ /3

D9,G(x)3,G(x0)=| ~ET,+A+E.GW)| =N D[detrt,GEVEE),

current density




The quasiclassical theory and the boundary condition problem
[Eilenberger (1968), Larkin & Ovchinnikov (1968)]

. ’
Principle of quasiclassics: integrate out “fast oscillations” elkF (x=x7)
Equation reduced to — — - ,

i ik (x—x")
envelope functions: G(.X,x ) = G(X,X)e i
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Envelope functions (quasiclassical Green’s functions) have jumps at atomically sharp
interfaces, which cannot be derived within the quasiclassical theory

Need for separately derived boundary conditions!




HISTORY OF BOUNDARY CONDITIONS IN

THE QUASICLASSICAL THEORY

¢ Zaitsev (1984): boundary conditions for ballistic interfaces

= spin-degenerate interface, only transmission probabilities
= complicated non-linear equations

* Rainer, Sauls, Millis (1988): spin-active interface, ballistic

= general scattering matrix, complicated non-linear equations

» Kupriyanoy, Lukichev (1988): diffusive case
= Only small transmission

= One parameter: tunnel conductance GT == ZGQZTn
n

e Nazarov (1999): diffusive case
- arbitrary transmission, spin-degenerate

* More aspects: Zaikin, Shelankov, Eschrig,....



Circuit theory formulation of the diffusive theory and the boundary condition

Matrix current [(x)= —Gé(x)@xé(x) Conductivity ¢ = e°N,D
(unit area)
- o A A Characteristic length
Usadel equation  d_I(x)= —5[—1'ET3 + A+ Z,G(x)] \/ #D
leakage (or sourcg) of coherence Max(E,A,2)
Close to an interface: I, ,=-0Gd.G _ = |
L.R ‘L,R GL S GL
Scattering region = non-quasiclassical description < - -
: : I I I
(scattering matrix S) L LR R
Nazarov (1999): for a spin-independent scattering matrix S
- 262 Tn I:GL ’GR:I T, <1 GT o < 5
ILR - — — ~ |:GL 7GR:|
h “a+1,({G,.G,}-2) 2

~' ~

Boundary condition: I, =1,, = fR depends on transmission eigenvalues {Tn}

SF-Heterostructures: need for a spin-dependent boundary conditions!




The problem of spin-dependence (or energy) of the boundary scattering:

Isotropic GF General scattering matrix
(Usadel, diffusive regions) (across the interface)
- A r ot
G(x,E) S(E):[ C ]
A
= Matrix = Matrix
in Keldysh-Nambu-Spin space in Nambu-Spin space
If: S’(E) ~S X0, (spin- & energy-independent)

Then: [G(X,E),S'] =0 - extreme simplification!

Consequence:e.g.only 7T = Eigenvalues[ﬂt] enter the BC (Nazarov "99)



The way to spin-dependent boundary conditions in the diffusive case:

Generalization of the Nazarov-BC to weak spin dependence: 0 = argr, —argr,
Spin-polarization conductance Spin-dependent interfacial phase shifts
Gp = GQZ(TnT - Tn¢) G, = GQ26¢n
n n
=» Spin-polarized current =» Induced exchange splitting

Huertas-Hernando, Nazarov, Belzig (2002)
Taking into account strongly polarized magnetic insulators

n n
=>» pair-breaking Cottet, Huertas-Hernando, Belzig, Nazarov (2009)

Barriers with constant spin polarization (per channel)

§(E) =S®0,+S5S'®mO > all details of S and m enter! Machon, Belzig (2015)




Quantum Circuit Theory



Classical circuit theory

* Description by full Poisson equations is
very complicated and ineffective

* Conserved static currents flow between
contacts with fixed voltages

* No current through boundaries

Vi=AU =0

The problem is drastically simplified by

mapping onto a discretized structure

with elements

* Network of nodes and connectors
(resistors)

* Contacts to outer world: voltages in
terminals are fixed

* The voltages on the nodes have to be
determined by set of rules



Circuit theory and Kirchhoff rules

L% Jy ’
. ”
Conservations laws can be cast into two rules for an b Y 0
electric circuit composed of discrete elements ~ | T
{ 7 1 &
. | ”
Rule 1: The currentin each node is conserved (node rule) |
: g
Rule 2: The sum of all voltage differences \
(‘\" " ‘,:4,4.
around a closed loop is zero (loop rule) (&5}}‘* 22
At connections to the outer world, the voltages are fixed. The rules |, ¢ mW’ o=

completely determine all internal voltages and currents.

In addition we need the microscopic description of the connector: Ohms law
I1=(U,-U,)/R

Remarkable consequence: all conductance properties of arbitrarily complicated
networks are fully determined by the set of Kirchhoff Rules!



Nazarov 94-

Quantum Circuit theory

Jd .

We use the matrix current: I(X) — —Gg Electrical current:

dx [=Trt, I

related to the gradient of a “matrix voltage” g

The matrix current obeys a “conservation” law (up to decoherence)

8 (X) _ —lE[T3 ,g] N Other leakage/

source terms
8x
Usadel equation ﬁ
Decoherence/dephasingterm , (|
(leakage of coherence) 570 4

The matrix current conservation law is the basis of a circuit theory! We can construct
a network of connectors (with matrix voltage drop) and nodes (with matrix voltages)

[Usadel 70]
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Quantum Kirchhoff rules (without decoherence)

Principle: Consider a quantum electric circuit as composed of
discrete elements with unknown matrix voltages

Rule 1: The matrix current in each node is conserved

Ziiizo

Rule 2: The matrix voltages obey the normalization

A

g =i

In addition we need the description of the connector:
Quantum Ohms law

i12:%2

Derivation requires a microscopic theory of the interface.

T [ AA ] T,: Transmission probabilities,
n81>82 determined by the microscopic details

4 + Tn ({§1 ,§2 } — 2) Nonli.nearI functional relation between
matrix voltages

81
Leads: connected to circuit with some connector and a fixed
Green’s function (determine type of contact: normal metal,
superconductor,....

[Nazarov 99]



Electron-hole (de)coherence

Decoherence can be taken into account analogously to a leakage current

I + I +1 =0
caa A A leakage
- 1<x> [—iET,.8(x)] -
discretization » GQ 'EA R
leakage — [_l 15,8 ]

Quantum mechanical decoherence has the carase 5 ¢
same form as a leakage current. /
No charge is lost, only coherence! level spacing
Other contributions (from self energies)

_ v Vv
e superconductor (A) = source of coherence T T
* spin-flip scattering = loss of spin coherence A ~ __Z_Z.

» Zeeman field/exchange = spin-dependent energy shift 7 g

Quantum circuit theory: ,lé

* Quantum Kirchhoff rules + .Lfgﬂlcn‘b(

e Matrix voltages and matrix currents
* Dephasing as leakage of coherence




Spin-dependent Quantum Circuit Theory (boundary condition)

Connectors (contacts) Nodes (finite dwell time):

- G ~ A G A 2 A G A N
I (e)=—2|G,,.G, |+—= G t,G. _ 9 G. Leakage of coherence
- 2[ Ol : {766 |- {R ] fL(E):—iGgg[fg,éc]

2

Standard tunneling conductance
G, = GQZ(TnT i Tn¢)
n

=» Usual charge current

Spin-polarization conductance

G,= GQz(TnT — Tni)

n
=» Spin-polarized current

Spin-dependent interfacial phase shifts

G, =G, 2 09,
n . .
=» Induced exchange splitting Total matrix current conservation

Huertas-Hernando, Belzig, Nazarov, PRL (2001) i + i + i + i — O
Cottet, Huertas-Hernando, Belzig, Nazarov, PRB (2009) \) 1 2 L

Machon, Eschrig, Belzig, PRL (2013)




Some effects of the spin-dependent
boundary conditions on the density of
states



The density of states in a proximity metal with magnetic contacts

“stacked structure”

dl
G(V)= v N(eV)

-FI-11-I-S

Measure of coupling strength: Thouless energy E,;,
* weak coupling = small E;;, = weak proximity

* strong coupling = large E;,, = strong proximity
Related to the inverse mean dwell time in the central region

[Machon, Eschrig, Belzig, Phys. Rev. Lett. 110, 047002 (2013)]




How does the calculation look like in practice?



Spin-dependent the density of states in N

[calculation from: Machon, Eschrig, Belzig,

Total DOS: N (€)= N,(e)+ N (¢) Phys. Rev. Lett. 110, 047002 (2013)]
Spin polarization N,(€)— N (€) |
of the DOS N(e) | ]
Red: spin up ? ]
Green: spin down | i
Gq) /C;S 0 —

gumijds agdueydxl

G, =—= d

I 7{’ |
1.5"'3 \A

- th—A V@ —
S

100% spin-polarized energy bands*!




Spincaloritronics with an SF-heterostructure:
Spinthermoelectric “transistor” structure



Spin/charge/energy currents due [ oL oo i response | | Spin-voltage

to voltage/temperature gradient coefficients response
() )

I |=
K Is ) )

CJDCJEC’@Zs
I N

G, GYGY

Density of states

A Spin-split density of states + spin-polarized tunneling:

T.Dy(€)+T, D, (€)=T| D,(e)+ Dy(—€) |+ TP| D,(e) - D;(—e) |

Aﬁ_‘ ' '
Dy(=¢) even in € odd in €




Gy

Transistor thermopower oo | L' G =G,= 00
T T =0.1T,
P =P,=90%

Giant Seebeck coefficient!

[Machon, Eschrig, Belzig, Phys. Rev. Lett. 110, 047002 (2013)]



Thermoelectric figure of merit G =G,=G,/10
GS*T (L) T=0.1T.
o Viel _ T)2
K La¥ Lt — (Lah) P =P, =90%

T =

G,GYGY
€€Th N
GS G2’G1237Gg

Huge (>1) figure of merit!

[Machon, Eschrig, Belzig, New J. Phys. 16, 073002 (2014)]



Non-local caloritronics with an SF-heterostructure:

1=0 T l N
N N
A 1 2 0 G17G5G_§lb
—F= N
GS G27G57G§

(T Li) Lij|LY LLN [ AW
L LT Ly Ll)| [ —AT /Ty

Lg Lg1 Lg ng AV;

\Is) NLSY LT|Lyy L) \-ATy/Ts)

Local thermoelectric response Nonlocal thermoelectric response



Ballistic limit: identifying the different processes




3-TERMINAL SYSTEM

local nonlocal

I
0
free

qV ,qT qV ,qT
o A P

qV raV _rqV raqV
Liy L3, —L3y Ly,




Nonlocal thermopower Q= AVZ S in units of 8[uV/K]

Dirty case Clean case

* Similar behaviour, larger magnitude in clean case

¢ Maximal nonlocal thermopower small exchange splitting (comparable to E,; )
* Maximal for large polarization

* Sign change, more pronounced in clean limit



ONSAGER SYMMETRY

Temperatur dependence: Generalized Onsager-
(colors=different spin-mixing) Kelvin relation:

SRR B S M B e B e
; : ¥

qV qT qV qT
L11 L11 -L.a.a. L12

eV eT € eT
Ll%», L ‘ 127 1%
q q q
L21 - | 22 L22
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eV 174 T
L Ly L3

77 Independent of:

-+ ®Transmission probabilities
T+ ] ®Spin-dependent parameters
N 1 ®Relative magnetisation
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Conclusion/Summary

Quantum circuit theory of spin transport

e Circuit theory: nodes, connectors, leads

 Quantum Kirchhoff rules (Matrix current conservation)

* Spin-dependent boundary conditions/connector

Spin effects on proximity effect

* Spin-mixing in superconductors

e Superconducting proximity spin-split density of states due to a
ferromagnetic insulator

Thermoelectricity:

* Spin-splitting + spin-polarized tunneling > large Seebeck effect

* Maximizing thermoelectric efficiency in a N-SFI-N transistor
heterostructures

* Non-local Seebeck effect

General reference for QCT: Yu.V. Nazarov, arxiv:1999
Further references:

Machon, Eschrig, Belzig, Phys. Rev. Lett. 110, 047002 (2013)
Machon, Eschrig, Belzig, New J. Phys. 16, 073002 (2014)
Machon, Belzig, arxiv 02/2015

Eschrig, Cottet, Belzig, Linder arxiv 04/2015



The End



