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General properties of SF
Superconductor: attractive interaction
through virtual phonons
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trons there is the exchange interaction hrl/* (r) o lQ),where 7 are the Pauli ma-
t r ices,and0*andry 'areelectronoperators.  In th isregionthegfunct iondescr ibes
the electron motion with projection of the spin (-1r5) on the axis parallel to /t. The
influence of the magnetic field on the electron motion results in the replacement of
9 by the gradient-invariant phase difference.

The solution of Eqs. (l) in region I and 3 has the form of an exponential func-
tion with the exponents 0, tSr/lZrcl, and S) = ,/e +F In region 2 we find
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1 u + i h ) x / v ,  2 ( a + i h ) x l v  
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f 2 (  x )  = C s e  f i ( x )  = C o e  7

whereC6 andCj are constants. Taking into account the boundedness of the func-
tions / and /+ at infinity and their continuity at the boundaries of regions | , 2 and
2,3,we determine the function g'(.,rt). By using it we can easily calculate the
current 1.(p) that flows through the contact:

FIG. 1. Regions 1 and 3 are superconductors,
2 is a normal ferromagnetic metal, and L and d
are the thickness and transverse dimension of the
ferromagnet respectively. The shaded area is an
insulator.
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where a=2lhV, fvp, andR1,' is- the resistance of the weak link in the normal state.
The familiar expression fcn the Josephson current in a short, weak ,S-i/-S link follows
from Eq. (3) for a = 0.1'2

The current Is(p,a) oscillates as a function of ,p and c. The Is(p,a) dependence
is simplified near 7", where

nLz -  dy
I " ( s ,a )  =  -  F (a )s in  q ,  F (a ) :  a2  I  i ; cosy .
s  " '  kRNT o  / '

As a result of varying a, the function F(o) oscillates and passes through zero, and
F(o) = -rin ala for a )) l. The oscillations of the maximum critical current 1" as a
function of o are preserved in the region T 117";however, since the relative varia-
t ionsof thequant i ty l "aresmal ler , i tdoesnotvanish.  In thel imi t ingcaseofadi r ty
ferromagnetic metal hllvpll the oscillations vanish over the entire temperature
region.
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FIG. 2. Dependence of the maximum Josephson current on the temperature in an S-f'-S junction
for theparameters,T"x4 K,@=10K,hox 300K,anduF-2X l0t  cm/sec(shownschemat i -
cally).

The oscillations of the maximum current as a function of c can be detected ex-
perimentally from the temperature dependence of 1", since the exchange field in
the ferromagnet changes with the temperature. We shall examine a ferromagnetic
with a RKKI interaction and a Curie point @. For this case, fts = 1/@ep ,where ep
is the Fermi energy in the ferromagnetic metal, and fte is the exchange field at Z=0.
Setting €F - | eY,T"x4K,@< 10 K, and L x l0-3 cm, we find large, nonmono'
tonic variations of the current 1" by changing the temperature by about 0.5 K. Fig-
ure 2 shows sdrematically the I"(T) dependence for the parameters T"N 4 K,
@t l0  K,hsx300 K,  andvp=2X lO7 cm/sec.

We note that a closed superconducting ring with an S-f'-.S junction inserted into
it has a spontaneous current and magretic flux in the ground state if F(a) ( 0 and
the ring inductance is sufficiently large.3

We wish to thank V. V. Schmidt for discussions, which stimulated the study of
the properties of the S-F-S junction. We also wish to thank G. F. Zharkov, A. D.
Zukin,D. A. Kirzhnin, and D. E. Khmel'nitskii for a useful discussion of the work.
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multilayers, as well as in bilayers Nb/Ni !Sidorenko et
al., 2003", trilayers Fe/V/Fe !Garifullin et al., 2002",
Fe/Nb/Fe !Mühge et al., 1996", Nb/ #Fe/Cu$ layers
!Vélez et al., 1999", and Fe/Pb/Fe !Lazar et al., 2000".

The strong pair-breaking influence of the ferromagnet
and the nanoscopic range of oscillation period compli-
cate the observation of this effect. Advances in thin-film
processing techniques were crucial for the study of this
phenomenon. The first indications on the nonmonotonic
variation of Tc versus the F layer thickness was obtained
by Wong et al. !1986" for V/Fe superlattices. However,
in subsequent experiments of Koorevaar et al. !1994", no
oscillatory behavior of Tc was found, while recent stud-
ies by Garifullin et al. !2002" of the superconducting
properties of Fe/V/Fe trilayers revealed the reentrant
Tc behavior as a function of the F layer thickness. Bour-
geois and Dynes !2002" studied amorphous Pb/Ni bi-
layer quench-condensed films and observed only a
monotonic depairing effect with an increase of the Ni
layer thickness. In the work of Sidorenko et al. !2003", a
comparative analysis of sample preparations was made
and concluded that the molecular beam epitaxy grown
samples do not reveal Tc oscillations, whereas magne-
tron sputtered samples do. This difference is attributed
to the appearance of a magnetically “dead” interdiffused
layer at the S/F interface which plays an important role
for the molecular beam epitaxy grown samples. The
transition-metal ferromagnets, such as Fe, have a
strongly itinerant character of the magnetic moment
which is very sensitive to the local coordination. In thin
Fe layers, the magnetism may strongly decrease and
even vanish. The best choice is to use the rare-earth
ferromagnetic metal with localized magnetic moments.
This has been done by Jiang et al. !1995" who prepared
magnetron sputtered Nb/Gd multilayers, which clearly
revealed the Tc oscillations; see Fig. 5.

In Fig. 5 the curves show a pronounced nonmonotonic
dependence of Tc on the Gd layer thickness. An in-
crease of Tc implies the transition from the 0 phase to
the ! phase. Note that previous experiments on the mo-
lecular beam epitaxy grown Nb/Gd samples !Strunk et
al., 1994" revealed a steplike decrease of Tc with increas-
ing Gd layer thickness. A comprehensive analysis of dif-
ferent sample’s quality was made by Chien and Reich
!1999". Aarts et al. !1997" studied in detail the proximity
effect in a system consisting of the superconducting V
and ferromagnetic V1−xFex alloys and used interface
transparency to understand the pair-breaking mecha-
nism.

B. Theoretical description of the S/F multilayers

To provide a theoretical description of a nonmono-
tonic dependence of Tc, we consider the S/F multilay-
ered system with a thickness of the F layer 2df and the S
layer 2ds; see Fig. 6.

The x axis is chosen perpendicular to the layers with
x=0 at the center of the S layer. The 0 phase corre-
sponds to the same superconducting order-parameter

FIG. 5. Experimental data of Jiang et al. !1995" on the oscilla-
tion of the critical temperature of Nb/Gd multilayers vs thick-
ness of Gd layer dG for two different thicknesses of Nb layers:
!a" dNb=600 Å and !b" dNb=500 Å. Dashed line in !a" is a fit by
the theory of Radovic et al. !1991".

FIG. 6. S/F multilayer. The x axis is chosen perpendicular to
the planes of the S and F layers with the thicknesses 2ds and
2df, respectively. !a" The curve "!x" represents schematically
the behavior of the Cooper pair wave function in the 0 phase.
Due to symmetry the derivative of " !and F" is zero at the
centers of the S and F layers. The case of the 0 phase is equiva-
lent to the S/F bilayer with the S and F layer thicknesses ds and
df, respectively. !b" The Cooper pair wave function in the !
phase vanishes at the center of the F layers and "!x" is anti-
symmetric toward the center of the F layer.
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Fe layers, the magnetism may strongly decrease and
even vanish. The best choice is to use the rare-earth
ferromagnetic metal with localized magnetic moments.
This has been done by Jiang et al. !1995" who prepared
magnetron sputtered Nb/Gd multilayers, which clearly
revealed the Tc oscillations; see Fig. 5.

In Fig. 5 the curves show a pronounced nonmonotonic
dependence of Tc on the Gd layer thickness. An in-
crease of Tc implies the transition from the 0 phase to
the ! phase. Note that previous experiments on the mo-
lecular beam epitaxy grown Nb/Gd samples !Strunk et
al., 1994" revealed a steplike decrease of Tc with increas-
ing Gd layer thickness. A comprehensive analysis of dif-
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effect in a system consisting of the superconducting V
and ferromagnetic V1−xFex alloys and used interface
transparency to understand the pair-breaking mecha-
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B. Theoretical description of the S/F multilayers
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tonic dependence of Tc, we consider the S/F multilay-
ered system with a thickness of the F layer 2df and the S
layer 2ds; see Fig. 6.

The x axis is chosen perpendicular to the layers with
x=0 at the center of the S layer. The 0 phase corre-
sponds to the same superconducting order-parameter

FIG. 5. Experimental data of Jiang et al. !1995" on the oscilla-
tion of the critical temperature of Nb/Gd multilayers vs thick-
ness of Gd layer dG for two different thicknesses of Nb layers:
!a" dNb=600 Å and !b" dNb=500 Å. Dashed line in !a" is a fit by
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FIG. 6. S/F multilayer. The x axis is chosen perpendicular to
the planes of the S and F layers with the thicknesses 2ds and
2df, respectively. !a" The curve "!x" represents schematically
the behavior of the Cooper pair wave function in the 0 phase.
Due to symmetry the derivative of " !and F" is zero at the
centers of the S and F layers. The case of the 0 phase is equiva-
lent to the S/F bilayer with the S and F layer thicknesses ds and
df, respectively. !b" The Cooper pair wave function in the !
phase vanishes at the center of the F layers and "!x" is anti-
symmetric toward the center of the F layer.
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Currently, there exists only one experimental work on
the DOS in S/F systems, while several theoretical papers
treat this subject in more detail. In a series of papers
Halterman and Valls !2001, 2002, 2003" performed ex-
tensive theoretical studies of the local DOS behavior in
S/F systems in a clean limit using the self-consistent
Bogoliubov–de Gennes approach. They calculated the
DOS spectra in both S and F regions and took into ac-
count the Fermi wave-vector mismatch, interfacial bar-
rier, and sample size.

Fazio and Lucheroni !1999" performed numerical self-
consistent calculations of the local DOS in an S/F system
using the Usadel equation. Impurity scattering on DOS
oscillations has been studied by Baladié and Buzdin
!2001" and Bergeret et al. !2002". One concludes that
oscillations disappear in the clean limit. Here the calcu-
lations of the DOS oscillations made in the ballistic re-
gime for the ferromagnetic film on the top of the super-
conductor !Zareyan et al., 2001, 2002" depend essentially
on the boundary conditions at the ferromagnet-vacuum
interface. Sun et al. !2002" used the quasiclassical version
of the Bogoliubov–de Gennes equations for numerically
calculating the DOS in the S/F system with a semi-
infinite ferromagnet. They obtained in the clean limit
oscillations of the DOS and presented a quantitative fit
of the experimental data of Kontos et al. !2001". Aston-
ishingly, in another quasiclassical approach using Eilen-
berger equations oscillations of the DOS are absent for
an infinite electron mean free path !Baladié and Buzdin,
2001; Bergeret et al., 2002".

DOS oscillations in ferromagnets suggest similar oscil-
latory behavior of the local magnetic moment of the
electrons. The corresponding magnetic moment induced
by the proximity effect may be written as

!M = i"BN!0"#T#
$

$Gf!x,$,h" − Gf!x,$,− h"% . !25"

Assuming the low resistivity of a ferromagnet in the
dirty limit at temperatures near Tc, the magnetic mo-
ment is

!M = − "BN!0"#
%2

2Tc
exp&−

2x
&f
'sin&2x

&f
' . !26"

Note that the total electron’s magnetic moment in a fer-
romagnet is

M = !M + "BN!0"h . !27"

The local magnetic moment oscillates as does the DOS,
and in some regions M may be higher than in the ab-
sence of superconductivity. The proximity effect also in-
duces the local magnetic moment in a superconductor
near the S/F interface at a distance of the order of su-
perconducting coherence length &s.

Proximity induced magnetism was studied using the
Usadel equations by Krivoruchko and Koshina !2002"
and Bergeret et al. !2004a, 2004b". Numerical calcula-
tions of Krivoruchko and Koshina !2002" revealed the
damped oscillatory behavior of the local magnetic mo-
ment in a superconductor at the &s scale with positive
magnetization at the interface. On the other hand, Berg-
eret et al. !2004a" argued that the induced magnetic mo-
ment in a superconductor must be negative. This is re-
lated to the Cooper pairs located in space that one
electron of the pair is in the superconductor, while the
other is in the ferromagnet. The direction along the
magnetic moment is favored for the electron in the fer-
romagnet which makes the spin of the other electron in
the superconductor antiparallel.

Microscopic calculations of the local magnetic mo-
ment in the pure limit using the Bogoliubov–de Gennes
equations !Halterman and Valls, 2004a" also revealed
the damped oscillatory behavior of the local magnetic
moment but at the atomic length scale. In the quasiclas-
sical approach oscillations of the local magnetic mo-
ments disappear in the clean limit, similar to the case of
DOS oscillations. The magnitude of the proximity in-
duced magnetic moment is very small, and at the present
time there is no evidence in experiments.

D. Andreev reflection at the S/F interface

Spin effects play an important role in the Andreev
reflection at the S/F interface. An incident spin-up elec-
tron in a ferromagnet is reflected by the interface as a
spin-down hole, and as a result a Cooper pair of elec-
trons with opposite spins appears in a superconductor.
Therefore both the spin-up and spin-down bands of
electrons in a ferromagnet are involved in this process.
de Jong and Beenakker !1995" were the first to demon-
strate the major influence of spin polarization in a ferro-
magnet on the subgap conductance of the S/F interface.
In fully spin-polarized metals all carriers have the same
spin and Andreev reflection is totally suppressed. In
general, with an increase of the spin polarization the

FIG. 4. Measurements of the differential conductance by Kon-
tos et al. !2001" for two Al/Al2O3/PdNi/Nb junctions with two
different thicknesses !50 and 75 Å" of the ferromagnetic PdNi
layer. A 1500-Å-thick aluminum layer was evaporated on SiO
and then quickly oxidized to produce a Al2O3 tunnel barrier.
Tunnel junction areas were defined by evaporating 500 Å of
SiO through masks. A PdNi thin layer was deposited and then
backed by a Nb layer.
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general feature and it is true also for the subsequent
0-! transitions occurring at a higher F layer thickness.
For some range of F layer thicknesses the transition
from the 0 to ! phase is possible when the temperature
is lowered.

For the case when 1"#B"h /Tc, the $ function terms
in Eq. !58" can be neglected, and at T=Tc the critical
thickness df

c is

df
c!T = Tc" =

%f

2 # 3%f

#B%n
$1/3

, !60"

while at T→0 the critical thickness is smaller df
c!T=0"

= !%f /2"!6%f /!#B%n"1/3. The critical F layer thickness,
given by Eq. !60", naturally coincides with the corre-
sponding expression !48" obtained for S/F multilayers in
the limit h&Tc. Examples of different nonmonotonic
Ic!T" dependences for low barrier transparency limit
#B&h /Tc are presented in Fig. 13. In fact, in the limit of
low barrier transparency and thin F layer, superconduct-
ing electrons tunnel through ferromagnetically ordered
atoms. The situation is reminiscent of the tunneling
through magnetic impurities, considered by Kulik !1965"
and Bulaevskii et al. !1977". More relevant is the analogy
with the mechanism of the !-phase realization due to
the tunneling through a ferromagnetic layer in the
atomic S/F multilayer structure, which is considered in
Sec. VII.

Fogelström !2000" considered the ferromagnetic layer
as a partially transparent barrier with transmission de-
pending on spin projections. This work may be consid-
ered as a further development of the Bulaevskii et al.
!1977" approach. The Andreev bound states appearing
near the spin-active interface within the superconduct-
ing gap are tunable with the magnetic properties of the
interface. This can result in the switch of the junction
from the 0 to ! state by changing the transmission char-
acteristics of the interface. This approach was also ap-
plied by Andersson, Cuevas, and Fogelström !2002" to
study the coupling of two superconductors through a fer-

romagnetic dot. They demonstrated that the ! junction
is possible in this case as well. Using the Bogoliubov–de
Gennes approach, Tanaka and Kashiwaya !1997" ana-
lyzed two superconductors separated by a '-functional
barrier with the spin-orientation dependent height.

Similar to the case of S/F multilayers we discuss the
existence of the S/F/S junction with arbitrary equilib-
rium phase difference (0. Naturally, the form of Eq. !49"
for the energy of the junction gives the minima at (=0
and (=! only. A more general expression for the
Josephson-junction energy takes into account higher-
order terms over the critical current which leads to the
appearance of higher harmonics over ( in the current-
phase relationship. Up to the second harmonic, the en-
ergy is

E =
)0Ic

2!c
!1 − cos (" −

)0

2!c
I2

2
cos 2( , !61"

and the current is

j!(" = Ic sin ( + I2 sin 2( . !62"

If the sign of the second harmonic term is negative
I2*0, then the transition from the 0 to ! phase will
be continuous, and the (0 junction becomes possible.
In general, the (0 junction may exist if j!(0"=0
and !!j /!("(0

+0. Calculations of the current-phase
relationships for different types of S/F/S junctions
!Radovic et al., 2003; Golubov et al., 2004; Cayssol and
Montambaux, 2005" show that !j /!(*0, and therefore
the transition between the 0 and ! states appears
discontinuous.

The presence of higher harmonics in the j!(" relation-
ship prevents the vanishing of the critical current at the
transition from the 0 to ! state. This is always the case
when the transition occurs at low temperature. Theoret-

FIG. 13. Nonmonotonic temperature dependences of the nor-
malized critical current for the low transparency limit. Curve 1,
h /Tc=10 and 2df /%f=0.84; curve 2, h /Tc=40 and 2df /%f=0.5;
curve 3, h /Tc=100 and 2df /%f=0.43.

FIG. 14. Critical current Ic as a function of temperature for
Cu0.48Ni0.52 junctions with different F layer thicknesses 2dF. At
the thickness of the F layer of 27 nm the temperature medi-
ated transition between the 0 and ! phase occurs. Adapted
from Ryazanov, Oboznov, Rusanov, et al., 2001.
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A spin triplet supercurrent through the half-metallic
ferromagnet CrO2

R. S. Keizer1, S. T. B. Goennenwein1†, T. M. Klapwijk1, G. Miao2,3, G. Xiao3 & A. Gupta2

In general, conventional superconductivity should not occur in a
ferromagnet, though it has been seen in iron under pressure1.
Moreover, theory predicts that the current is always carried by
pairs of electrons in a spin singlet state2, so conventional super-
conductivity decays very rapidly when in contact with a ferro-
magnet, which normally prohibits the existence of singlet pairs. It
has been predicted that this rapid spatial decay would not occur if
spin triplet superconductivity could be induced in the ferro-
magnet3,4. Here we report a Josephson supercurrent through the
strong ferromagnet CrO2, from which we infer that it is a spin
triplet supercurrent. Our experimental set-up is different from
those envisaged in the earlier predictions, but we conclude that the
underlying physical explanation for our result is a conversion
from spin singlet pairs to spin triplets at the interface. The
supercurrent can be switched with the direction of the magnetiza-
tion, analogous to spin valve transistors, and therefore could
enable magnetization-controlled Josephson junctions.
In our experiment we realized a sample (Fig. 1b) in which two

s-wave superconductors, made out of NbTiN (ref. 5), are coupled by
the conducting ferromagnet CrO2, a material well known from
magnetic recording tapes6. Using electron-beam lithography, sput-
tering and lift-off, two ‘T’-shaped NbTiN electrodes with a relatively
large mutual distance of 0.3–1 mm are patterned on top of the CrO2

(Fig. 1c). On cooling the sample to temperatures between 1 and 10K,
we find that the current between the two electrodes, which can only
pass through the ferromagnetic CrO2 film, is a supercurrent (Fig. 2a).
We also find that with increasing temperatures the maximum super-
current, Ic, decreases, and disappears at a temperature comparable to
the superconducting transition temperature, T c, of the thin NbTiN
film (Fig. 2b). The observation of a supercurrent through a ferro-
magnet has been reported before7,8, but only for very weak ferro-
magnets and over significantly shorter distances.
The ferromagnet we use, CrO2, is a so-called half-metallic ferro-

magnet6. The electronic transport is metallic for the spin-up elec-
trons, while it is insulating for the spin-down electrons, a property
which is entirely due to the band structure of the material, schema-
tically shown in Fig. 1a. Some details of the electronic structure are
still under debate, but CrO2 is assumed to be a self doped double
exchange ferromagnet with a gap (of ,2 eV) in the spin-down
density-of-states at the Fermi level9. The material has a Curie
temperature TCurie < 390K and is metallic at low temperatures10,
with a resistivity of about 8.9 mQ cm at 1.6 K. It has been experimen-
tally demonstrated that, as expected, the spin polarization is close to
100% (refs 11, 12). The saturation magnetization is equal to two
Bohr magnetons (2mB) per unit cell. Important for our experiments
is that the magnetic behaviour (switching/rotation of the magnetiza-
tion direction) has been shown to be single-domain-like, even for
macroscopic films13.

From magnetotransport measurements at temperature T ¼ 4.2 K
(in which the resistance of the film is measured as a function of an
external, in-plane magnetic field), we find the CrO2 films to have a
biaxial (cubic) magneto-crystalline symmetry in the plane of the
film. This biaxial character appears as two switches in the resistance
as a function of field, which enabled us to identify the directions of
the easy axes of the ferromagnet: 308, 1508, 2108 and 3308 to the
crystallographic c axis. As shown in Fig. 1d, the junction is aligned
along this axis, while the a axis and b axis are out-of-plane and in-
plane, respectively.
In conventional superconductors—such as NbTiN used here—

electrons are paired in so-called singlet Cooper pairs. In singlet pairs,
an electron with spin up is paired with another electron with spin

LETTERS

Figure 1 | Basic aspects of the experimental system. a, Simplified view of
the spin dependent density-of-states (DOS) of CrO2. At the Fermi level,
there is a gap in the DOS for spin-down, while the spin-up band is metallic,
leading to a fully spin-polarized conductor. The absence of spin-down states
rules out spin-flip scattering in the transport. EF, Fermi energy. b, Schematic
illustration of the studied devices. The half-metallic CrO2 (100) single
crystal thin film (100 nm thick) is epitaxially grown on top of an (insulating)
TiO2 (100) substrate by chemical vapour deposition23. Then, patterns are
defined in an organic resist mask with conventional electron beam
lithography. Before the deposition of the s-wave superconductor NbTiN
(ref. 5) contacts, the surface not covered by the mask is sputter-cleaned with
an Ar plasma to remove the natural oxide Cr2O3 terminating the surface in
order to obtain high quality contacts to the CrO2. Note that this fabrication
procedure precludes spurious connections between theNbTiN electrodes, as
independently confirmed by scanning electron microscopy. c, Scanning
electron micrograph of a typical final device. d, Illustration of the alignment
of the current directionwith respect to themagnetization axes.w is the angle
of the applied magnetic fieldH with respect to the current direction I, and v
is the direction of the magnetization M.
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Wissenschaften,Walther-Meißner-Straße 8, D-85748, Garching, Germany.
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down. When two superconductors are coupled through a normal
metal, a supercurrent will flowwhen the thickness of the normal layer
is less than, or of the order of, the normal metal coherence length
yN ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
"D=kBT

p
;with Planck’s constant ", the diffusion constant for

elastic scattering D, and Boltzmann’s constant kB. In normal metals,
yN < 100 nm is a measure for the length over which a Cooper pair
looses its coherence, and is insensitive to the spin of the electrons
forming the Cooper pair. If the normal metal is replaced by a
conducting ferromagnet, as in our experiment, the electrons sense
the magnetization and are pulled apart in energy depending on their
spin orientation. yN must then be replaced by yF <

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
"D=kBTCurie

p
.

As typically T ,, TCurie, yF in a ferromagnet is short, of the order of
1 nm. The reason is that a singlet Cooper pair (just as a normalmetal)
is symmetric for the spin directions. In contrast, a ferromagnet likes
to have all spins pointing in the same direction. Several recent
experiments have confirmed this short-length-scale picture7,8.
However, Bergeret, Volkov and Efetov3 have demonstrated theor-

etically that coherent triplet Cooper pairs—that is, pairs of electrons
with both spins in parallel—can be induced in a ferromagnet in close
proximity to a conventional singlet pair superconductor, given
suitable conditions14. They also predict that the coherence length
will be equal to yN of a normal metal, hence the name ‘long range
proximity effect’. These authors furthermore show4 that triplet
correlations are, unlike the anomalous order parameters in 3He
(ref. 15) and unconventional superconductors16,17, robust against
impurity scattering. There are some indications for the existence of
these long-range correlations18–20, but an unequivocal experiment
ruling out other explanations, such as the observation of a Josephson
supercurrent through a fully spin-polarized ferromagnet, has not
been reported. In our experiment, we observe such a supercurrent

which prevails over very long length scales ,1 mm, that is much
longer than expected for singlet correlations, and which character-
istically depends on the orientation of the magnetization in the
ferromagnet. Therefore, we attribute this long-range supercurrent to
superconducting triplet correlations.
In conventional Josephson junctions, the supercurrent I s is given

by I csin(f1 2 f2), meaning that the maximum value, the critical
current I c, is obtained for a phase difference f1 2 f2 ¼ p/2, with f1

the quantum phase of superconductor 1 and f2 the quantum phase
of superconductor 2. The application of an external magnetic field,
H, creates a position dependence of the phasesf1 andf2, leading to a
characteristic periodic dependence onmagnetic induction, B, known
as a Fraunhofer pattern2 (in analogy to optical diffraction). We have
applied a magnetic field in the plane of the CrO2 film. Besides the
conventional Fraunhofer pattern, we observe additional effects due
to the finite magnetization,M, of the sample, as shown in Fig. 2c. As
evident from the raw data shown in the inset, there are clear signs of
hysteresis in the critical current as a function of the magnetic field.
Owing to the biaxial symmetry of the magnetic system, the magne-
tization vector follows a different trajectory along the easy directions
of the film (clockwise versus anticlockwise) in the up and down
sweep of the magnetic field (Fig. 1d). This results in the magnetiza-
tion in the upsweep lagging behind with respect to the magnetization
in the downsweep, leading to an overall shift in the two sweeps (of the
order of 45mT). After removal of the hysteresis, clear oscillations are
visible in the critical current, corresponding to the addition of one
flux quantum through the junction area per period of the oscillation
of 80mT. This corresponds to an effective junction length of 240 nm
(which is somewhat shorter than the actual length of the junction,
310 nm). Although the periodic dependence is quite analogous to the

Figure 2 | Observed superconducting transport properties of the
superconductor–CrO2–superconductor system. a, Typical current–voltage
(I–V) characteristic at temperatureT ¼ 1.6 K: a zero resistance supercurrent
branch is clearly visible (for larger critical currents the current–voltage
characteristic is hysteretic, see inset). Similar data have been observed in 10
different samples, some of which had several devices in series. From device
to device a spread of critical current of less than 2 orders of magnitude is
found. The magnitude of IcRN (the product of the critical current, Ic, and
the normal state resistance, RN) is for all junctions smaller than 4mV (twice
the estimated gap size of the NbTiN), and typically 10–300 mV, for nominal
junction lengths, L, of 0.3–1 mm. b, Critical current as a function of

temperature for three devices. c, Critical current as a function of external
magnetic field, applied in the plane of the film, for the device used in a. The
anglew between the direction of the current and the field is 908. The raw data
are shown in the inset with a trace for increasing (up-sweep) and one for
decreasing (down-sweep) magnetic field strength, demonstrating that we
observe hysteresis. In the main figure the measurements for decreasing field
strength are shifted by m0H ¼ 45mT (with the permeability of vacuum, m0)
with respect to those for increasing field to correct for the hysteresis. The
main figure clearly shows oscillations in the critical current with the applied
magnetic flux through the junction. For technical reasons no measurements
are performed in perpendicular field.
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Observation of Spin-Triplet Superconductivity in Co-Based Josephson Junctions

Trupti S. Khaire, Mazin A. Khasawneh, W. P. Pratt, Jr., and Norman O. Birge*

Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824-2320, USA
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We have measured a long-range supercurrent in Josephson junctions containing Co (a strong ferro-

magnetic material) when we insert thin layers of either PdNi or CuNi weakly ferromagnetic alloys

between the Co and the two superconducting Nb electrodes. The critical current in such junctions hardly

decays for Co thicknesses in the range of 12–28 nm, whereas it decays very steeply in similar junctions

without the alloy layers. The long-range supercurrent is controllable by the thickness of the alloy layer,

reaching a maximum for a thickness of a few nm. These experimental observations provide strong

evidence for induced spin-triplet pair correlations, which have been predicted to occur in

superconducting-ferromagnetic hybrid systems in the presence of certain types of magnetic

inhomogeneity.

DOI: 10.1103/PhysRevLett.104.137002 PACS numbers: 74.50.+r, 74.20.Rp, 74.45.+c, 75.70.Cn

When a conventional spin-singlet superconductor is
brought into contact with a normal metal, superconducting
pair correlations penetrate into the normal metal over
distances as large as a micron at low temperature, creating
the superconducting proximity effect [1]. If the normal
metal is replaced by a ferromagnet, the pair correlations
penetrate only a few nanometers, as the exchange field in
the ferromagnet leads to a rapid loss of phase coherence
between electrons with opposite-pointing spins [2,3]. This
limitation would not arise if the Cooper pairs in the super-
conductor had spin-triplet symmetry, which occurs only
rarely in nature [4,5]. It was predicted several years ago
that spin-triplet superconducting correlations could be in-
duced at the interface between a conventional spin-singlet
superconductor and a ferromagnet with inhomogeneous
magnetization [6,7]. Moreover, these pair correlations are
in a new symmetry class: they have even relative orbital
angular momentum but are odd in frequency or time [8]. A
promising hint of spin-triplet correlations in half-metallic
CrO2 was reported in 2006 by Keizer et al. [9]; however,
there has been no confirmation of that result in the inter-
vening time. Here we present strong evidence for spin-
triplet pair correlations in Josephson junctions fabricated
from common metals: Nb and Co. The magnetic inhomo-
geneity is supplied by thin layers of a weakly
ferromagnetic alloy—either PdNi or CuNi—inserted be-
tween the Co and Nb layers. As the Co thickness is
increased, the maximum supercurrent in the Josephson
junctions decays very slowly—in sharp contrast to the
very fast decay observed in similar junctions without these
alloy layers [10]. The strength of the triplet correlations
can be controlled by the thickness of the alloy layer, reach-
ing its maximum for a thickness of a few nm.

A schematic diagram of our Josephson junction samples
is shown in Fig. 1(a). The entire multilayer structure up
through the top Au layer is sputtered onto a Si substrate in a
single run, without breaking vacuum between subsequent

layers. The multilayers are subsequently patterned into
circular pillars using photolithography and Ar ion milling,
after which the SiOx insulating layer is thermally evapo-
rated to isolate the top Nb contact from the base. Finally,
the top Nb contact is sputtered through a mechanical mask.
The Au layer is fully superconducting due to the proximity
effect with the surrounding Nb layers. The Nb supercon-
ducting layers have critical temperature near 9 K, which
allows us to measure the Josephson critical supercurrent at
4.2 K with the samples dipped in liquid helium. Details of
our fabrication and measurement procedures are given in
our previous publications [10,11].
The detailed sequence of internal layers [labeled F for

‘‘ferromagnetic’’ in Fig. 1(a)] is shown in Fig. 1(b). The

FIG. 1 (color online). (a) Schematic diagram of the Josephson
junction samples, shown in cross-section. (b) Detailed sequence
of the metal layers inside the Josephson junctions (labeled F in
a). The layers labeled X are either PdNi or CuNi alloy. The
functions of the various layers are described in the text. Only the
thicknesses of the Co and X layers are varied in this work. The
Cu buffer layers play no active role in the devices, but are
important to isolate the X layers magnetically from the Co
layers.
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purpose of the ferromagnetic Co is to suppress the conven-
tional spin-singlet Josephson supercurrent. As explained in
more detail in Ref. [10], we have inserted a thin Ru layer in
the center of the Co layer, which induces antiparallel
exchange coupling between the domains in the two Co
layers [12], leaving nearly zero net magnetization in the
junctions. As a result, the critical current vs applied mag-
netic field data exhibit nearly ideal ‘‘Fraunhofer patterns’’,
as shown in Fig. 2. These patterns give us reliable mea-
surements of the maximum critical current in each sample,
while also indicating that the current flow in the junctions
is uniform and that there are no shorts in the surrounding
SiO insulator. (Without the Ru layers, the Fraunhofer
patterns of Josephson junctions similar to the ones studied
here are random, and the critical currents are very small
[10].) The layers labeled X represent either Pd0:88Ni0:12 or
Cu0:48Ni0:52 ferromagnetic alloys. The Cu layers between
the X layers and the Co layers serve two purposes. First,
they isolate the X and Co layers magnetically, so the
magnetization of the X layers is not exchange coupled to
that of the Co layers. Second, we have found in our earlier
work that the quality of our sputtered Co is higher when
sputtered on Cu than on some other materials (Nb in [10]).

We discuss first the case where X ¼ Pd0:88Ni0:12, a
weakly ferromagnetic alloy with a Curie temperature of
175 K [11]. Figure 3(a) shows the product of critical
current and normal state resistance, IcRN, vs total cobalt
thickness, DCo " 2dCo, for a series of samples with fixed
PdNi layer thickness, dPdNi ¼ 4 nm. (The normal state
resistance, RN , is determined from the inverse slope of
the I-V curve for I # Ic.) There is no discernible decay
of IcRN for DCo > 12 nm. For comparison, Fig. 3(a) also
shows data from Ref. [10] for junctions not containing
PdNi. In those samples IcRN decays very rapidly with

increasing DCo, with a decay constant of 2:34$ 0:08 nm
[10]. WhenDCo ¼ 20 nm, IcRN is over 100 times larger in
the samples with PdNi than in the samples without PdNi.
The long-range character of the Josephson current in
samples with PdNi represents strong evidence for its
spin-triplet nature.
The subtle role of the X layers in enhancing the super-

current is illustrated in Fig. 3(b), which shows IcRN vs dX
with X ¼ PdNi or CuNi for two sets of samples with DCo

fixed at 20 nm. Without any X layer, IcRN is very small,
consistent with the data shown in Fig. 3(a). When the X

FIG. 2. Critical current (Ic) vs applied magnetic field (H) for a
10 !m diameter Josephson junction with dCo ¼ 13 nm and
dPdNi ¼ 4 nm, measured at T ¼ 4:2 K. The excellent
‘‘Fraunhofer pattern’’ results from cancellation of the intrinsic
magnetic flux in the junction, due to antiparallel exchange
coupling of the two Co layers via the thin Ru layer. (The lines
are guides to the eye.) The inset shows the current-voltage (I-V)
characteristic of the junction at H ¼ 0.

FIG. 3 (color online). (a) Product of critical current times
normal state resistance, IcRN , as a function of total Co thickness,
DCo ¼ 2dCo. Red circles represent junctions with X ¼ PdNi and
dPdNi ¼ 4 nm, whereas black squares represent junctions with no
X layer (taken from Ref. [10]). As DCo increases above 12 nm,
IcRN hardly drops in samples with PdNi, but drops very rapidly
in samples without. (The solid line is a fit of the data without
PdNi to a decaying exponential, also from Ref. [10]. In [10], data
from multiple junctions with the same value of DCo were
represented by a single data point with an error bar; here, each
device is represented by its own data point.) (b) IcRN product as
a function of dX for two series of junctions with fixed DCo ¼
20 nm. Red circles: X ¼ PdNi; blue triangles: X ¼ CuNi. (The
two squares at dX ¼ 0 are taken from Ref. [10].) In both cases,
IcRN first increases, then eventually decreases with increasing
dX. Lines are guides to the eye.
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this system is challenging. An enhanced proxim-
ity effect was also recently reported in (17); here
the likely source of magnetic inhomogeneity
was in secondary ferromagnet/normal metal bi-
layers placed at the superconductor/ferromagnet
interface.

For a more straightforward interpretation of
the results, an appealing approach would be to
use one of the intrinsically inhomogeneous fer-
romagnets such as the rare earth metal Ho (18)
coupled to a homogeneous ferromagnetic barrier.
Long-range superconducting phase-coherent
oscillations were reported in Ho wires (19) grown
by evaporation and contacted inside a supercon-
ducting ring, but a Josephson current was not
detected.

Our experiment was motivated by the pro-
posal (16) for a spin-triplet Josephson junction
consisting of two spin-singlet superconductors
(S) coupled via a ferromagnetic trilayer (FL/FC/FR).
The magnetization of FL and FR layers should be
noncollinear to provide the necessary inhomoge-
neity for the spin-triplet configuration of electron
spins to be favorable (Fig. 1A). The experiment
enables the decay length of the supercurrent from
spin-triplet pairs in the homogeneous central fer-
romagnet FC to be directly compared with that
in simple homogeneous ferromagnetic barriers
of the same material and thickness.

We report results from structures in which
Ho was used for FL and FR, and Co was used
for FC (Fig. 1, B and C). The conical magnetic

ordering of Ho, which consists of an antiferro-
magnetic spiral canted to produce a net ferro-
magnetic component in the c-axis orientation,
allows for the inclusion of reproducibly noncol-
linear magnetic layers within device structures.
Moreover, its magnetic properties and a prefer-
ential (0001) texture are robust even in thin films
at the nanometer scale (20).

We processed several series of nanoscale Nb/
Ho/Co/Ho/Nb junctions with varying Ho and
Co layer thicknesses (21); within each junction,
the thicknesses of FL and FR Ho layers were
equal and varied in the 0- to 12-nm range with
an absolute error of ~0.2 nm. The electrical prop-
erties of these junctions were measured at 4.2 K,
from which the critical current (IC) and normal
state resistance (RN) of a device were determined
(21). Because device areas varied, IC was nor-
malized by multiplying by RN to give the char-
acteristic voltage (ICRN).

The behavior of simple Co barrier junctions
is well understood: The singlet-based IC oscil-
lates as a function of Co thickness with a period
of ~1 nm superimposed on an exponentially de-
caying function with a characteristic length of
xCo ~1 nm [Fig. 2A, inset; data from Nb/Rh/Co/
Rh/Nb junctions in (22)]. This structure was cho-
sen because it represents an equivalent layering
sequence with the same number of interfaces
and therefore acts as a better control sample than
a pure Nb/Co/Nb junction (which nevertheless
shows similar properties).

The main plot in Fig. 2A shows the Co
thickness dependence of ICRN for Nb/Ho/Co/
Ho/Nb junctions. In comparison with the Co
barrier junctions, the decay length is substan-
tially longer by a factor of at least 20. The figure
shows an approximate fit (shaded region) giv-
ing a coherence length of xCo > 10 nm, which
agrees with the normal (nonmagnetic) coherence
length (ħD/kBT)1/2 ~ 10 nm assuming an elec-
tron diffusivity of D ≈ 4.3 × 10−7 m2 s−1 (and
where ħ is Planck’s constant h divided by 2p, kB
is Boltzmann’s constant, and T is temperature)
(22); that is, the supercurrent is passing through
the composite Ho/Co/Ho barrier as if it were
nonmagnetic.

To understand in more detail the role of the
Ho layers, we symmetrically varied dHo [any
asymmetry (DdHo) < 0.2 nm]) for several values
of Co barrier thicknesses (Fig. 2B). In the 2-nm
Co data, increasing the thickness of the Ho lay-
ers results in an increase in ICRN of more than
an order of magnitude, despite the overall in-
crease in barrier thickness and total magnetic
moment. Plain Co barriers of 5 and 8 nm show
no measurable supercurrent in our previous ex-
periments (9, 22). Further measurements con-
firming the presence of a Josephson effect are
given in Fig. 3, A and B. External microwaves
give rise to sharp dips in the dynamic resistance
at particular voltage (V) values (Fig. 3A). These
Shapiro steps occur at integer values of V/ϕ0f =
T1, where ϕ0 is the flux quantum and f is the
applied microwave frequency. Upon application

Fig. 2. (A) Slow decay at 4.2 K in the characteristic voltage of Nb/Ho(4.5 nm)/Co(dCo)/Ho(4.5 nm)/Nb
junctions (blue circles) and Nb/Ho(10 nm)/Co(dCo)/Ho(10 nm)/Nb junctions (green circles) versus Co barrier
thickness (dCo). Inset: Comparative data (black circles) from (22) showing the behavior of Nb/Rh/Co/Rh/Nb
junctions. The oscillating curves in the inset and main panel are theoretical fits to the experimental data in
the inset, as described in (22). (B) Characteristic voltage in Nb/Ho(dHo)/Co/Ho(dHo)/Nb junctions at 4.2 K
versus Ho layer thickness (dHo) for various Co barrier thicknesses. The thicknesses of each Ho layer in a
junction are identical. The peaks correlate to noninteger spiral wavelengths (l) in Ho. Asterisks identify
small, but nonzero characteristic voltage values. The red curves are a guide to the eye.

Fig. 3. (A) Dynamic resistance of a Nb/Ho(4.5 nm)/Co(16 nm)/Ho(4.5 nm)/Nb junction versus current and
voltage at 4.2 K with and without microwaves. The normal state resistance of this device is RN ≈ 0.076
ohm and the critical current is IC ≈ 90 mA. The voltage scale is divided by ϕ0 f, where ϕ0 is the flux
quantum and f is the microwave frequency. A constant in-plane field of −32 mT was applied during these
measurements to cancel out internal flux and demagnetizing fields from the Co barrier. (B) Critical current
versus in-planemagnetic field at 4.2 K. The critical currents are offset in field (DH) due to internal flux and
demagnetizing fields from the Co barrier. Solid curves are a guide to the eye. Insets: (left) illustration of a
junction showing the field orientation, and (right) absolute DH versus Co barrier thickness.
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Controlled Injection of
Spin-Triplet Supercurrents
into a Strong Ferromagnet
J. W. A. Robinson,* J. D. S. Witt, M. G. Blamire

The superconductor-ferromagnet proximity effect describes the fast decay of a spin-singlet
supercurrent originating from the superconductor upon entering the neighboring ferromagnet.
After placing a conical magnet (holmium) at the interface between the two, we detected a
long-ranged supercurrent in the ferromagnetic layer. The long-range effect required particular
thicknesses of the spiral magnetically ordered holmium, consistent with spin-triplet proximity
theory. This enabled control of the electron pairing symmetry by tuning the degree of magnetic
inhomogeneity through the thicknesses of the holmium injectors.

The electronic properties of a material that
has been cooled below its superconduct-
ing transition temperature are influenced

by the pairing symmetry of the electrons. In a
conventional superconductor, the Cooper pairs
are formed from electrons with an antiparallel
spin alignment and are in the spin-singlet state
(1, 2). In contrast to superconductivity, ferromag-
netism favors a parallel alignment of electron
spins. Consequently, superconductivity and ferro-
magnetism rarely coexist, and diverse and com-
plex phenomena arise at the interface between
superconducting and ferromagnetic thin films
(3). The most striking manifestation happens when
spin-singlet Cooper pairs pass through a ferromag-
net: The differential action of the ferromagnetic
exchange field creates a spatially varying phase,
which results in an oscillatory damping of the

critical current (IC) over a ferromagnetic thick-
ness of a few nanometers (4–10).

Recent experiments have detected a longer-
ranged effect in which the superconductivity ap-
pears to be insensitive to ferromagnetic exchange
fields (11, 12). These results could be explained
in the context of spin-triplet pairing in which
Cooper pairs are formed with a parallel spin

alignment at the superconductor-ferromagnet
interface (13–15). The spin-triplet pair is
believed to be only weakly affected by the
exchange field so that its phase coherence
decays on the same length scale as that of spin-
singlet pairs in a normal metal. Within this theo-
retical framework, the generation of spin-triplet
electron pairs requires the presence of particular
magnetic inhomogeneity at the superconductor-
ferromagnet interface (13, 16).

Long-range Josephson coupling is presently
the most robust way of detecting a spin-triplet
current, and was reported in (11, 12) for a bar-
rier formed from the half-metal CrO2. Sup-
porting theory (14) suggested that the required
magnetic inhomogeneity for the spin-triplet
proximity effect could be provided by hypo-
thetical spin disorder at the surface of the half-
metal. A more recent theory (16) indicates that
two matched spin-triplet sources are needed to
achieve a Josephson effect; physically, this con-
dition requires both interfaces to be magnetically
noncollinear and to share specific symmetries.
Because the nature of the inhomogeneteity is
uncertain in the CrO2-based junctions, reproduc-
ibly achieving these symmetry requirements in

Department of Materials Science and Metallurgy, University of
Cambridge, Pembroke Street, Cambridge CB2 3QZ, UK.

*To whom correspondence should be addressed. E-mail:
jjr33@cam.ac.uk

Fig. 1. (A) Theoretical
spin-triplet Josephson
junction adapted from
(16), consisting of two
spin-singlet supercon-
ductors (S) linked via a
noncollinear ferromag-
netic trilayer (FL-FC-FR).
(B) The conical magnetic
configuration of idealized
Ho below its Curie tem-
perature (20 K), showing an antiferromagnetic spiral rotating in-plane by q = 30° per atomic plane and
pitched a = 80° out-of-plane. The moments (arrows) rotate about the surface of a cone with the spiral
wavelength, l, corresponding to a Ho thickness of ~3.4 nm. (C) Device layout consisting of two
superconducting Nb electrodes coupled via a Ho-Co-Ho trilayer.
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Triplet	
  supercurrent	
  by	
  conical	
  ferromagnet	
  
Robinson	
  et	
  al.	
  (2011)	
  



Quasiclassical	
  Theory	
  	
  
&	
  	
  

Boundary	
  Condi$ons	
  



The	
  quasiclassical	
  theory	
  of	
  inhomogeneous	
  superconductors	
  
General	
  superconductors:	
  Gorkov	
  equa3ons	
  for	
  matrix	
  Greens	
  func3on	
  
[Note:	
  GF	
  is	
  in	
  general	
  a	
  matrix	
  in	
  Nambu-­‐Keldysh-­‐Spin-­‐….-­‐Space]	
  

[Gorkov	
  (1957),	
  Abrikosov	
  (1958)]	
  

Realis3c	
  case:	
  impuri3es,	
  microscopic	
  imperfec3ons	
  lead	
  to	
  random	
  elas3c	
  scaEering	
  
à	
  all	
  interference	
  effects	
  ~exp(ikFx)	
  are	
  washed	
  out	
  

5 10 15 20

-1.0

-0.5

0.5

1.0

Ψ = ψ↑,ψ↓,ψ↓
†,−ψ ↑

†( )

Contains	
  full	
  microscopic	
  oscilla3ons	
  on	
  scale	
  of	
  Fermi	
  wavelength	
  

Usually	
  unnecessary	
  amount	
  of	
  informa3on!	
  

x-­‐x’	
  

  
⌣
G(x, x ') = −i T Ψ(x)Ψ†( ′x ) ≈

⌣
G(x, x)eikF (x− ′x )



The	
  quasiclassical	
  theory	
  of	
  inhomogeneous	
  superconductors	
  

Selfenergy	
  contribu3ons	
  (phonons,	
  impuri3es,	
  Coulomb,…)	
  

 

⌣
Σ ph (
"x) =
⌣
Δ("x) = λ dε∫

⌣
G(x,vF ,ε ) off −diag

Pairing	
  poten3al	
  
 

⌣
Σimp (

"x,ε ) = 1
2τ
⌣
G "vF

Elas3c	
  impurity	
  scaEering	
  

E.g.	
  

 
−i∂t

ε
! + i"vF

"
∇ +
⌣
Σ("x,ε ),

⌣
G("vF ,

"x,ε )
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= 0

Transport-­‐like	
  equa3on	
  for	
  the	
  qc	
  Greensfunc3on	
  
  

!p2

2m
− εF ≈

pF
2

2m
− i
!pF
m
!
∇− εF = −i!vF

!
∇

[Eilenberger	
  (1968);	
  Larkin,	
  Ovchinnikov	
  (1968)]	
  

 
⌣
G("vF ,

"x,t,t ')2 =
⌣
1

angular	
  average	
  

 

!
j = e2N0 dε∫ trτ̂ 3

⌣
GK (
!vF ,
!x,ε )

vF

Normaliza3on	
  condi3on	
  

current	
  density	
  

Diffusive	
  approxima3on	
  

 

l = vFτ ≪
vF
Δ
ξS
"
, vF
kT
ξT
"

[Usadel	
  1970]	
  

 
⌣
G("vF ,

"x) =
⌣
G("x)+ "vF

"⌣
G("x)+…

D = vF
2τ / 3

 
D∂x

⌣
G(x)∂x

⌣
G(x) = −iEτ̂ 3 + Δ̂ + Σ̂ ',

⌣
G(x)⎡⎣ ⎤⎦

Usadel	
  equa3on	
  (quantum	
  diffusion	
  equa3on)	
  

 
!
j = e2N0D dε∫ trτ̂ 3

⌣
G(!x)

!
∇
⌣
G(!x)K

current	
  density	
  



The	
  quasiclassical	
  theory	
  and	
  the	
  boundary	
  condi$on	
  problem	
  

Principle	
  of	
  quasiclassics:	
  	
  integrate	
  out	
  “fast	
  oscilla3ons“	
  
	
  
	
  
Equa3on	
  reduced	
  to	
  	
  
envelope	
  func3ons:	
  

[Eilenberger	
  (1968),	
  Larkin	
  &	
  Ovchinnikov	
  (1968)]	
  

Need	
  for	
  separately	
  derived	
  boundary	
  condi3ons!	
  

Envelope	
  func3ons	
  (quasiclassical	
  Green’s	
  func3ons)	
  have	
  jumps	
  at	
  atomically	
  sharp	
  
interfaces,	
  which	
  cannot	
  be	
  derived	
  within	
  the	
  quasiclassical	
  theory	
  

x	
  

 
⌣
G(x, x ') ≈

⌣
G(x, x)eikF (x− ′x )

eikF (x− ′x )



HISTORY OF BOUNDARY CONDITIONS IN 
THE QUASICLASSICAL THEORY

Zaitsev (1984): boundary conditions for ballistic interfaces 
➡ spin-degenerate interface, only transmission probabilities 
➡ complicated non-linear equations 

Rainer, Sauls, Millis (1988):  spin-active interface, ballistic 
➡ general scattering matrix, complicated non-linear equations 

Kupriyanov, Lukichev (1988): diffusive case 
➡ Only small transmission 
➡ One parameter: tunnel conductance 

• Nazarov (1999): diffusive case 
➡ arbitrary transmission, spin-degenerate 

• More aspects: Zaikin, Shelankov, Eschrig,....

GT = 2GQ Tn
n
∑



Circuit	
  theory	
  formula$on	
  of	
  the	
  diffusive	
  theory	
  and	
  the	
  boundary	
  condi$on	
  

 
⌣
I (x) = −σ

⌣
G(x)∂x

⌣
G(x)Matrix	
  current	
  

(unit	
  area)	
  
σ = e2N0DConduc3vity	
  

 

∂x
⌣
I (x) = − σ

D
−iEτ̂ 3 + Δ̂ + Σ̂,

⌣
G(x)⎡⎣ ⎤⎦

" #$$$$ %$$$$
Usadel	
  equa3on	
  

leakage	
  (or	
  source)	
  of	
  coherence	
  

 

⌣
IL ,R = −σ

⌣
G∂x

⌣
G

L ,R
Close	
  to	
  an	
  interface:	
  

ScaEering	
  region	
  =	
  non-­‐quasiclassical	
  descrip3on	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (scaEering	
  	
  matrix	
  S)	
  

Nazarov	
  (1999):	
  for	
  a	
  spin-­‐independent	
  scaEering	
  matrix	
  S	
  

 

⌣
ILR =

2e2

h
Tn
⌣
GL ,
⌣
GR⎡⎣ ⎤⎦

4 +Tn
⌣
GL ,
⌣
GR{ }− 2( )n

∑ ≈
Tn≪1GT

2
⌣
GL ,
⌣
GR⎡⎣ ⎤⎦

Characteris3c	
  length	
  

 
ξ = !D

Max(E,Δ,Σ)

 
⌣
IL  

⌣
IR 

⌣
ILR

 
⌣
GL  

⌣
GL 

⌣
S

 ≪ ξ

Boundary	
  condi3on:	
    
⌣
IL =
⌣
ILR =

⌣
IR Tn{ }depends	
  on	
  transmission	
  eigenvalues	
  	
  

SF-­‐Heterostructures:	
  need	
  for	
  	
  a	
  spin-­‐dependent	
  boundary	
  condi3ons!	
  



The	
  problem	
  of	
  spin-­‐dependence	
  (or	
  energy)	
  of	
  the	
  boundary	
  scaIering:	
  

Isotropic	
  GF	
  
(Usadel,	
  diffusive	
  regions)	
  	
  

 
⌣
G(x,E)

=	
  Matrix	
  
in	
  Keldysh-­‐Nambu-­‐Spin	
  space	
  	
  

General	
  scaEering	
  matrix	
  
(across	
  the	
  interface)	
  

Ŝ(E) = r t
t ' r '

⎛
⎝⎜

⎞
⎠⎟

=	
  Matrix	
  
in	
  Nambu-­‐Spin	
  space	
  	
  

If:	
  	
   Ŝ(E) ~ S ⊗σ 0 (spin-­‐	
  &	
  energy-­‐independent)	
  

Then:	
  	
  
 
⌣
G(x,E), Ŝ⎡⎣ ⎤⎦ = 0 à	
  extreme	
  simplifica3on!	
  

Consequence:	
  e.g.	
  only	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  enter	
  the	
  BC	
  (Nazarov	
  `99)	
  Tn = Eigenvalues[t
†t]



The	
  way	
  to	
  spin-­‐dependent	
  boundary	
  condi$ons	
  in	
  the	
  diffusive	
  case:	
  

Barriers	
  with	
  constant	
  spin	
  polariza3on	
  (per	
  channel)	
  
	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  à	
  all	
  details	
  of	
  S	
  and	
  m	
  enter!	
   Machon,	
  Belzig	
  (2015)	
   Ŝ(E) = S⊗σ 0 + S '⊗

!m !σ

Fully	
  general	
  spin-­‐dependent	
  BC	
  	
  
(including	
  arbitrary	
  polariza3on,	
  textures,	
  and	
  spin-­‐mixing)	
  
	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  à	
  all	
  details	
  of	
  S	
  and	
  all	
  m’s	
  enter!	
  

Eschrig,	
  CoEet,	
  Belzig,	
  Linder	
  (2015)	
  
 

Ŝ(E) =
r ( !mL ) t ( !m)
t '( !m) r '( !mR )

⎛

⎝
⎜

⎞

⎠
⎟

Taking	
  into	
  account	
  strongly	
  polarized	
  magne3c	
  insulators	
  

CoEet,	
  Huertas-­‐Hernando,	
  Belzig,	
  Nazarov	
  (2009)	
  

Gφ2 = GQ δϕn
2

n
∑ Gφ 3 = GQ δϕn

3

n
∑

è	
  pair-­‐breaking	
  
 Gφ 4 =!

Generaliza3on	
  of	
  the	
  Nazarov-­‐BC	
  to	
  weak	
  spin	
  dependence:	
  

Huertas-­‐Hernando,	
  Nazarov,	
  Belzig	
  (2002)	
  

GP = GQ Tn↑ −Tn↓( )
n
∑

Spin-­‐polariza3on	
  conductance	
  

è	
  Spin-­‐polarized	
  current	
  

Gφ = GQ δϕn
n
∑

Spin-­‐dependent	
  interfacial	
  phase	
  shiMs	
  

è	
  Induced	
  exchange	
  splitng	
  

δϕ = arg r↑ − arg r↓



Quantum	
  Circuit	
  Theory	
  



Classical	
  circuit	
  theory	
  

•  Descrip3on	
  by	
  full	
  Poisson	
  equa3ons	
  is	
  
very	
  complicated	
  and	
  ineffec3ve	
  

•  Conserved	
  sta3c	
  currents	
  flow	
  between	
  
contacts	
  with	
  fixed	
  voltages	
  

•  No	
  current	
  through	
  boundaries	
  	
  

-

The	
  problem	
  is	
  dras3cally	
  simplified	
  by	
  
mapping	
  onto	
  a	
  discre$zed	
  structure	
  
with	
  elements	
  
•  Network	
  of	
  nodes	
  and	
  connectors	
  

(resistors)	
  
•  Contacts	
  to	
  outer	
  world:	
  voltages	
  in	
  

terminals	
  are	
  fixed	
  
•  The	
  voltages	
  on	
  the	
  nodes	
  have	
  to	
  be	
  

determined	
  by	
  set	
  of	
  rules	
  

 

∇

j = ΔU = 0

 
n

j = 0



Circuit	
  theory	
  and	
  Kirchhoff	
  rules	
  

Conserva3ons	
  laws	
  can	
  be	
  cast	
  into	
  two	
  rules	
  for	
  an	
  
electric	
  circuit	
  	
  composed	
  of	
  discrete	
  elements	
  
	
  
Rule	
  1:	
   	
  The	
  current	
  in	
  each	
  	
  node	
  is	
  conserved	
  (node	
  rule)	
  
	
  
Rule	
  2:	
   	
  The	
  sum	
  of	
  all	
  voltage	
  differences	
  	
  

	
   	
  around	
  a	
  closed	
  loop	
  is	
  zero	
  	
  (loop	
  rule)	
  
	
  
At	
  connec3ons	
  to	
  the	
  outer	
  world,	
  the	
  voltages	
  are	
  fixed.	
  The	
  rules	
  
completely	
  determine	
  all	
  internal	
  voltages	
  and	
  currents.	
  

Remarkable	
  consequence:	
  all	
  conductance	
  proper3es	
  of	
  arbitrarily	
  complicated	
  
networks	
  are	
  fully	
  determined	
  by	
  the	
  set	
  of	
  Kirchhoff	
  Rules!	
  

In	
  addi3on	
  we	
  need	
  the	
  microscopic	
  descrip3on	
  of	
  the	
  connector:	
  Ohms	
  law	
  

I = U1 −U2( ) / R



Quantum	
  Circuit	
  theory	
  
Nazarov	
  94-­‐	
  

We	
  use	
  the	
  matrix	
  current:	
   Î (x) = −σ ĝ ∂
∂x

ĝ

The	
  matrix	
  current	
  obeys	
  a	
  “conserva3on”	
  law	
  (up	
  to	
  decoherence)	
  

 
D ∂
∂x

Î (x) = −iE τ̂ 3, ĝ[ ]+!

[Usadel	
  70]	
  

Usadel	
  equa$on	
  

The	
  matrix	
  current	
  conserva3on	
  law	
  is	
  the	
  basis	
  of	
  a	
  circuit	
  theory!	
  We	
  can	
  construct	
  
a	
  network	
  of	
  connectors	
  (with	
  matrix	
  voltage	
  drop)	
  and	
  nodes	
  (with	
  matrix	
  voltages)	
  

Electrical	
  current:	
  

I = Trτ̂ K Î

τ̂ 3 =
1 0
0 −1

⎛
⎝⎜

⎞
⎠⎟

related	
  to	
  the	
  gradient	
  of	
  a	
  “matrix	
  voltage”	
   ĝ



Quantum	
  Kirchhoff	
  rules	
  (without	
  decoherence)	
  

Principle:	
  Consider	
  a	
  quantum	
  electric	
  circuit	
  	
  as	
  composed	
  of	
  
discrete	
  elements	
  with	
  unknown	
  matrix	
  voltages	
  
	
  
Rule	
  1:	
   	
  The	
  matrix	
  current	
  in	
  each	
  node	
  is	
  conserved	
  

	
  
	
  

Rule	
  2:	
   	
  The	
  matrix	
  voltages	
  obey	
  the	
  normaliza3on	
  

Deriva3on	
  requires	
  a	
  microscopic	
  theory	
  of	
  the	
  interface.	
  

In	
  addi3on	
  we	
  need	
  the	
  descrip3on	
  of	
  the	
  connector:	
  	
  
Quantum	
  Ohms	
  law	
  

 
Î12 =

e
!

Tn ĝ1, ĝ2[ ]
4 +Tn ĝ1, ĝ2{ }− 2( )n

∑
Tn:	
  Transmission	
  probabili3es,	
  
determined	
  by	
  the	
  microscopic	
  details	
  
Nonlinear	
  func3onal	
  rela3on	
  between	
  
matrix	
  voltages	
  

Îii∑ = 0

ĝi
2 = 1̂

[Nazarov	
  99]	
  	
  

Leads:	
  connected	
  to	
  circuit	
  with	
  some	
  connector	
  and	
  a	
  fixed	
  
Green’s	
  func3on	
  (determine	
  type	
  of	
  contact:	
  normal	
  metal,	
  
superconductor,….	
  

N,S,F	
  
	
  
	
  

{Tn}

ĝN ,S ,F

ĝ1



Electron-­‐hole	
  (de)coherence	
  
Decoherence	
  can	
  be	
  taken	
  into	
  account	
  analogously	
  to	
  a	
  leakage	
  current	
  

− ∂
∂x

Î (x) = −iEτ̂ 3, ĝ(x)[ ]
Quantum	
  mechanical	
  decoherence	
  has	
  the	
  
same	
  form	
  as	
  a	
  leakage	
  current.	
  	
  
No	
  charge	
  is	
  lost,	
  only	
  coherence!	
  

Quantum	
  circuit	
  theory:	
  
•  Quantum	
  Kirchhoff	
  rules	
  
•  Matrix	
  voltages	
  and	
  matrix	
  currents	
  
•  Dephasing	
  as	
  leakage	
  of	
  coherence	
  

Î1 + Î2 + Îleakage = 0

Îleakage =
GQ

δ
−iEτ̂ 3, ĝc[ ]discre3za3on	
  

ĝ

level	
  spacing	
  
Other	
  contribu3ons	
  (from	
  self	
  energies)	
  
•  superconductor	
  (Δ)	
  =	
  source	
  of	
  coherence	
  
•  spin-­‐flip	
  scaEering	
  =	
  loss	
  of	
  spin	
  coherence	
  
•  Zeeman	
  field/exchange	
  =	
  spin-­‐dependent	
  energy	
  shiM	
  



Spin-­‐dependent	
  Quantum	
  Circuit	
  Theory	
  (boundary	
  condi$on)	
  

Huertas-­‐Hernando,	
  Belzig,	
  Nazarov,	
  PRL	
  (2001)	
  
CoEet,	
  Huertas-­‐Hernando,	
  Belzig,	
  Nazarov,	
  PRB	
  (2009)	
  
Machon,	
  Eschrig,	
  Belzig,	
  PRL	
  (2013)	
  

Standard	
  tunneling	
  conductance	
  

GT = GQ Tn↑ +Tn↓( )
n
∑

è	
  Usual	
  charge	
  current	
  

GP = GQ Tn↑ −Tn↓( )
n
∑

Spin-­‐polariza3on	
  conductance	
  

è	
  Spin-­‐polarized	
  current	
  

Gφ = GQ δφn
n
∑

Spin-­‐dependent	
  interfacial	
  phase	
  shiMs	
  

è	
  Induced	
  exchange	
  splitng	
  

G1,G
P
1,G

φ
1

G2,G
P
2,G

φ
2

GS

c

Î1(Ĝc )

Î2 (Ĝc )ÎS (Ĝc )

Î L (Ĝc )

Total	
  matrix	
  current	
  conserva3on	
  

ÎS + Î1 + Î2 + Î L = 0

QCT	
  

Î L (ε ) = −iGQ
ε
δ

τ̂ 3,Ĝc⎡⎣ ⎤⎦

Leakage	
  of	
  coherence	
  

Ĝc
2 = 1̂

Connectors	
  (contacts)	
   Nodes	
  (finite	
  dwell	
  3me):	
  

Î1→c(ε ) =
GT

2
Ĝ1,Ĝc⎡⎣ ⎤⎦ +

GP

2
κ̂ ,Ĝ1{ },Ĝc

⎡
⎣

⎤
⎦ − i

Gφ

2
κ̂ ,Ĝc⎡⎣ ⎤⎦



Some	
  effects	
  of	
  the	
  spin-­‐dependent	
  
boundary	
  condi$ons	
  on	
  the	
  density	
  of	
  
states	
  



The	
  density	
  of	
  states	
  in	
  a	
  proximity	
  metal	
  with	
  magne$c	
  contacts	
  

N1-­‐FI-­‐N-­‐I-­‐S	
  

“stacked	
  structure”	
  

[Machon,	
  Eschrig,	
  Belzig,	
  Phys.	
  Rev.	
  LeE.	
  110,	
  047002	
  (2013)]	
  

Measure	
  of	
  coupling	
  strength:	
  Thouless	
  energy	
  Eth	
  
•  weak	
  coupling	
  =	
  small	
  ETh	
  =	
  weak	
  proximity	
  
•  strong	
  coupling	
  =	
  large	
  ETh	
  =	
  strong	
  proximity	
  
Related	
  to	
  the	
  inverse	
  mean	
  dwell	
  $me	
  in	
  the	
  central	
  region	
  

G1,G
P
1,G

φ
1

G2,G
P
2,G

φ
2

GS

c

N1	
  

N	
  

G(V ) = dI
dV

~ N(eV )

 
ETh =

!
τ dwell



How	
  does	
  the	
  calcula3on	
  look	
  like	
  in	
  prac3ce?	
  



Spin-­‐dependent	
  the	
  density	
  of	
  states	
  in	
  N	
  

G1 =
GS

10
ETh = Δ

Red:	
  spin	
  up	
  
Green:	
  spin	
  down	
  

S	
  

N	
  

FI	
  

N1	
  

 
N(ε) = N↑(ε)+ N↓(ε)Total	
  DOS:	
  

 

N↑(ε)− N↓(ε)
N(ε)

  / Δ

Gφ /GS

Exchange	
  split
ng	
  

 N(ε)

Spin	
  polariza3on	
  
of	
  the	
  DOS	
  

100%	
  spin-­‐polarized	
  energy	
  bands*!	
  

[calcula3on	
  from:	
  Machon,	
  Eschrig,	
  Belzig,	
  	
  
Phys.	
  Rev.	
  LeE.	
  110,	
  047002	
  (2013)]	
  



Spincaloritronics with an SF-heterostructure: 
Spinthermoelectric “transistor” structure 
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 to voltage/temperature gradient Thermoelectric response 

coefficients ︎  
Spin-­‐voltage	
  
response	
  

Spin-injection and -Seebeck response 
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s	
  spin-­‐splitng	
  

Spin-­‐split	
  density	
  of	
  states	
  +	
  spin-­‐polarized	
  tunneling:	
  

  

T↑D↑(ε)+T↓ D↓(ε)
D↑(−ε)
! = T D↑(ε)+ D↑(−ε)⎡⎣ ⎤⎦

even in ε
" #$$ %$$

+TP D↑(ε)− D↑(−ε)⎡⎣ ⎤⎦
odd in ε

" #$$ %$$



Transistor	
  thermopower	
  

S = ΔV
ΔT

G1,G
P
1,G

φ
1

G2,G
P
2,G

φ
2

GS

c

Giant	
  Seebeck	
  coefficient!	
  

G1 = G2 =
GS

100

P1 = P2 = 90%
T = 0.1Tc

[Machon,	
  Eschrig,	
  Belzig,	
  Phys.	
  Rev.	
  LeE.	
  110,	
  047002	
  (2013)]	
  

S = − 1
T
LqT

LqV



Thermoelectric	
  figure	
  of	
  merit	
  

[Machon,	
  Eschrig,	
  Belzig,	
  New	
  J.	
  Phys.	
  16,	
  	
  073002	
  (2014)]	
  

Huge	
  (>1)	
  figure	
  of	
  merit!	
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P1 = P2 = 90%
T = 0.1Tc
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Non-local caloritronics with an SF-heterostructure: 

Nonlocal thermoelectric response Local thermoelectric response 
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Nonlocal Onsager relations in a three terminal proximity system

P. Machon,1 M. Eschrig,2 and W. Belzig1
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(Dated: February 22, 2012)

The symmetries of thermal and electric transport coe⌃cients in quantum coherent structures are
related to fundamental thermodynamic principles by the Onsager reciprocity. We generalize the On-
sager relations to nonlocal thermoelectric currents in a three terminal ferromagnet-superconductor
heterostructure including spin-dependent crossed Andreev reflection and direct electron transfer
processes. We proof this general symmetry using the spin-dependent boundary conditions for quasi
classical Green’s functions in both the clean and the dirty limit. We predict an anomalously large
local thermopower and a nonlocal Seebeck e⇤ect, which can be explained by the spin-dependent
spectral properties.

Heterostructures of ferromagnets and superconductors
are studied intensively since they show interesting phys-
ical phenomena based on the spin-dependent proxim-
ity e⇥ect. Spectacular examples are the surprisingly
long-range triplet Josephson currents [10], recently con-
firmed experimentally [11] and non-local transport phe-
nomena as exemplified by the so-called crossed Andreev
reflection [6], for which also experimental evidence ex-
ists [22],[23],[24],[33], [34],[35]. Many phenomena could
be understood theoretically as result spin-dependent An-
dreev bound states [14],[15],[16],[8],[17],[18],[19],[21],[7],
related to spin-mixing [37] and spin-filtering e⇥ects at
interfaces [36].

Considering three terminal devices as a paradigm to
investigate multi-terminal transport in normal metal-
superconductor systems, nonlocal currents are predicted
to occur due to crossed Andreev reflection and direct
electron transfer [6],[12],[13]. Throughout this Letter
we are interested in nonlocal spin-dependent e⇥ects that
come into play, when normal normal metal contacts are
replaced by ferromagnetic terminals. For this reason
we use the spin-dependent boundary conditions (SBC)
[1],[20] (cite: rainersauls,huertas, ballistic) for quasiclas-
sical Green’s functions to study the influence of the
spin-dependent scattering parameters on the electrical
and thermal transport properties in the setup shown in
FIG. 1.

Our main results can be discussed in the context of
the general thermo-electric properties of three terminal
transport. We will limit our discussion to the linear re-
sponse regime and introduce the linear transport coef-
ficients relating the charge/energy currents Iq/I� to an
applied voltage �Vj = Vj � VS or a temperature di⇥er-
ence �Tj = Tj�TS where j = 1/2 distinguishes between
the two ferromagnetic terminals and S labels the super-
conductor.
�
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FIG. 1: (color online) The thee terminal system consisting of
two ferromagnets (blue) and a superconductor (green). (a)
Schematic picture of the geometry. Trajectories for electrons
(gray, spin up) and holes (red, spin down) illustrate a possible
transport process in the ballistic case. �⇥ denotes the solid
angle for which trajectories contribute to nonlocal e⇤ects. (b)
The equivalent circuit diagram following from a finite element
approach in the di⇤usive limit including the coherence leakage
[5]. The interface parameters are introduced in in the SBC
and will be discussed in detail in Eq. 2 and beneath.

This generalized conduction matrix contains two local
and two nonlocal blocks each consisting of four parame-
ters. Hence, the complete matrix is described by 8 local
and 8 nonlocal parameters.

Our first result is the existence of finite local and non-
local thermo-electric coe⇧cients, viz. LqT

ij in Eq. 1 as
a consequence of the spin-dependent scattering. Micro-
scopically, this can be traced back to an asymmetric

I=0	
  



Nonlocal Onsager relations in a three terminal proximity system

P. Machon,1 M. Eschrig,2 and W. Belzig1

1Department of Physics, University of Konstanz, D-78457 Konstanz, Germany
2Department of Physics, Royal Holloway, University of London, Egham Hill, EGHAM, TW20 0EX, UK

(Dated: February 22, 2012)

The symmetries of thermal and electric transport coe⌃cients in quantum coherent structures are
related to fundamental thermodynamic principles by the Onsager reciprocity. We generalize the On-
sager relations to nonlocal thermoelectric currents in a three terminal ferromagnet-superconductor
heterostructure including spin-dependent crossed Andreev reflection and direct electron transfer
processes. We proof this general symmetry using the spin-dependent boundary conditions for quasi
classical Green’s functions in both the clean and the dirty limit. We predict an anomalously large
local thermopower and a nonlocal Seebeck e⇤ect, which can be explained by the spin-dependent
spectral properties.

Heterostructures of ferromagnets and superconductors
are studied intensively since they show interesting phys-
ical phenomena based on the spin-dependent proxim-
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firmed experimentally [11] and non-local transport phe-
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superconductor systems, nonlocal currents are predicted
to occur due to crossed Andreev reflection and direct
electron transfer [6],[12],[13]. Throughout this Letter
we are interested in nonlocal spin-dependent e⇥ects that
come into play, when normal normal metal contacts are
replaced by ferromagnetic terminals. For this reason
we use the spin-dependent boundary conditions (SBC)
[1],[20] (cite: rainersauls,huertas, ballistic) for quasiclas-
sical Green’s functions to study the influence of the
spin-dependent scattering parameters on the electrical
and thermal transport properties in the setup shown in
FIG. 1.

Our main results can be discussed in the context of
the general thermo-electric properties of three terminal
transport. We will limit our discussion to the linear re-
sponse regime and introduce the linear transport coef-
ficients relating the charge/energy currents Iq/I� to an
applied voltage �Vj = Vj � VS or a temperature di⇥er-
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the two ferromagnetic terminals and S labels the super-
conductor.
�

⇧⇧⇤

Iq1
I�1
Iq2
I�2

⇥

⌃⌃⌅ =

�

⇧⇧⇤

LqV
11 LqT

11 LqV
12 LqT

12

L�V
11 L�T

11 L�V
12 L�T

12

LqV
21 LqT

21 LqV
22 LqT

22

L�V
21 L�T

21 L�V
22 L�T

22

⇥

⌃⌃⌅

�

⇧⇧⇤

�V1

��T1/TS

�V2

��T2/TS

⇥

⌃⌃⌅ . (1)

(a)

I I

IR

IAR

ICAR

IEC

�⇥

(b) leakage

FIG. 1: (color online) The thee terminal system consisting of
two ferromagnets (blue) and a superconductor (green). (a)
Schematic picture of the geometry. Trajectories for electrons
(gray, spin up) and holes (red, spin down) illustrate a possible
transport process in the ballistic case. �⇥ denotes the solid
angle for which trajectories contribute to nonlocal e⇤ects. (b)
The equivalent circuit diagram following from a finite element
approach in the di⇤usive limit including the coherence leakage
[5]. The interface parameters are introduced in in the SBC
and will be discussed in detail in Eq. 2 and beneath.

This generalized conduction matrix contains two local
and two nonlocal blocks each consisting of four parame-
ters. Hence, the complete matrix is described by 8 local
and 8 nonlocal parameters.

Our first result is the existence of finite local and non-
local thermo-electric coe⇧cients, viz. LqT

ij in Eq. 1 as
a consequence of the spin-dependent scattering. Micro-
scopically, this can be traced back to an asymmetric

Ballis$c	
  limit:	
  iden$fying	
  the	
  different	
  processes	
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F1	
  
F2	
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FIG. 2: Density of states in the normal node for G1 = G2 =
0.1GS , GMR

1 = GMR
2 = 0.005/GS (=̂10%polarisation) and

GQ/2✏Th = GS/�(T = 0) (parameters are the same in all
FIG. of this letter) (a) The total density of states in the con-
tact region as function of the spin-mixing term G� of two
equal ferromagnets. The G� term acts like an e⇥ective Zee-
man field, splitting up the pseudo gap into the di⇥erent spin
directions. (b) shows the asymmetry in the projection of the
DOS for spin down (the picture for spin up looks the same
but mirrored at the ✏ = 0 axis).

I1 I2 �T1 �V2 S TS

I free 0 0 0 LqT
12 /L

qV
11

II 0 free 0 0 LqT
22 /L

qV
21

III I1 = I2 0 0
Lq,T

12 �Lq,T
22

Lq,V
11 �Lq,V

21

IV 0 0 free 0
LqT

12 LqT
21 �LqT

22 LqT
11

LqV
11 LqT

21 �LqV
21 LqT

11

V 0 0 0 free
LqT

12 LqV
22 �LqT

22 LqV
12

LqV
11 LqV

22 �LqV
21 LqV

12

TABLE I: List of di⇥erent possibilities to define the nonlocal
thermopower S = �V1/�T2 relating the voltage in 1 to the
thermal gradient in 2 in an experimental setup where VS = 0
and TS = T . Measurements of energy currents are avoided
here.

both ways lead to an asymmetry in the SDOS and con-
sequently to the astonishing prediction of a local and a
nonlocal thermopower for spin-polarized interfaces.

We now turn to the experimentally relevant question
how to define a nonlocal thermopower S = �V1/�T2,
which is not unique as for the local Seebeck coe⌅cient.
In Tab. I we list several possibilities to relate voltage
and temperature gradients on the two ferromagnets e.g.
�V1 and �T2 and avoid measurements of energy cur-
rents. The first two combinations are more intuitive since
they are introduced analogously to the local Seebeck co-
e⌅cient, i.e. the conjugated potentials �V2 and �T1

and one of the currents is put to zero. The combina-
tions III-V occur only in three terminal systems and lead
to more complicated terms for the Seebeck coe⌅cient.
Which combination is the experimentally most relevant
depends on the context.

In Fig. 3 we have chosen the first way to define the non-
local thermopower and show its dependence on the spin
polarization and spin-mixing parameters for T/Tc � 1
assuming equal ferromagnets. The clean and the dirty
limit show a similar behavior in particular for weak po-

larizations. Additionally both show the same point sym-
metry with respect to the origin and vanish if one of the
spin-dependent parameters vanishes. This behavior is
easily understood from the arguments using the SDOS
as follows. From the SBC in Eq. 2 the symmetry of S
with respect to the origin is a consequence of a �-rotation
in spin-space and the trace in the current formula is in-
variant under such a unitary transformation. The sign
change with respect to the axes can again be understood
by Fig. 2. The two spin projections produce a thermo-
electric e⇥ect with di⇥erent sign. A sign change in GMR

permutes the weights of both in the current and there-
fore changes the sign of the thermopower. On the other
hand a sign change in G� permutes the behavior of spin-
up and -down DOS and hence changes the sign of the
thermopower again. Similar arguments explain why an
extra sign change in the thermopower occurs exactly at
the peak position at ⇥F in FIG. 2(a), at which both spin-
polarized subbands cross the Fermi energy. The same
mechanism leads to a sign change in the clean limit, when
the spin-split Andreev levels cross at the Fermi energy.
Here the e⇥ect is even more drastic since the width of the
crossing peaks is determined solely by the transmission
to the ferromagnets.

(a) (b)

FIG. 3: Dependence of the nonlocal thermopower S =
T�1
S LqT

12 /L
qV
11 on the spin-dependent variables. In the clean

limit (a) all channels are equal and the spin-dependent vari-
ables are defined from one trajectory. In the dirty limit (b), P
(determined from GMR) is the polarization of each channel if
the channels are equally polarized and G� is the sum over all
possibly di⇥erent spin-mixing angles �. However both shifting
mechanisms of the subgap states in combination with di⇥erent
transmission probabilities for spin up and spin down lead to
similar behavior like the zero crossing when the subgap peaks
cross the Fermi energy (see FIG. 2), the increase while the
polarization increases and the symmetry with respect to the
axis. The quantitative di⇥erences are related to the di⇥erent
subgap band widths in the di⇥erent limits. For small spin-
dependent parameters the di⇥erence in magnitude is roughly a
factor of 5. The huge di⇥erence for bigger values can be under-
stood from the di⇥erent spin-mixing mechanisms shifting the
subgap peak and from the fact that the SBC in the dirty limit
is linearised in the polarisation strength. The local/nonlocal
parameters contributing to the thermopower are normalised
to their associated local/nonlocal normal state electrical con-
ductivity LqV

ij (T > TC). (VS = 0 ; T = TS = 0.1Tc)
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and TS = T . Measurements of energy currents are avoided
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both ways lead to an asymmetry in the SDOS and con-
sequently to the astonishing prediction of a local and a
nonlocal thermopower for spin-polarized interfaces.

We now turn to the experimentally relevant question
how to define a nonlocal thermopower S = �V1/�T2,
which is not unique as for the local Seebeck coe⌅cient.
In Tab. I we list several possibilities to relate voltage
and temperature gradients on the two ferromagnets e.g.
�V1 and �T2 and avoid measurements of energy cur-
rents. The first two combinations are more intuitive since
they are introduced analogously to the local Seebeck co-
e⌅cient, i.e. the conjugated potentials �V2 and �T1

and one of the currents is put to zero. The combina-
tions III-V occur only in three terminal systems and lead
to more complicated terms for the Seebeck coe⌅cient.
Which combination is the experimentally most relevant
depends on the context.

In Fig. 3 we have chosen the first way to define the non-
local thermopower and show its dependence on the spin
polarization and spin-mixing parameters for T/Tc � 1
assuming equal ferromagnets. The clean and the dirty
limit show a similar behavior in particular for weak po-

larizations. Additionally both show the same point sym-
metry with respect to the origin and vanish if one of the
spin-dependent parameters vanishes. This behavior is
easily understood from the arguments using the SDOS
as follows. From the SBC in Eq. 2 the symmetry of S
with respect to the origin is a consequence of a �-rotation
in spin-space and the trace in the current formula is in-
variant under such a unitary transformation. The sign
change with respect to the axes can again be understood
by Fig. 2. The two spin projections produce a thermo-
electric e⇥ect with di⇥erent sign. A sign change in GMR

permutes the weights of both in the current and there-
fore changes the sign of the thermopower. On the other
hand a sign change in G� permutes the behavior of spin-
up and -down DOS and hence changes the sign of the
thermopower again. Similar arguments explain why an
extra sign change in the thermopower occurs exactly at
the peak position at ⇥F in FIG. 2(a), at which both spin-
polarized subbands cross the Fermi energy. The same
mechanism leads to a sign change in the clean limit, when
the spin-split Andreev levels cross at the Fermi energy.
Here the e⇥ect is even more drastic since the width of the
crossing peaks is determined solely by the transmission
to the ferromagnets.

(a) (b)

FIG. 3: Dependence of the nonlocal thermopower S =
T�1
S LqT
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qV
11 on the spin-dependent variables. In the clean

limit (a) all channels are equal and the spin-dependent vari-
ables are defined from one trajectory. In the dirty limit (b), P
(determined from GMR) is the polarization of each channel if
the channels are equally polarized and G� is the sum over all
possibly di⇥erent spin-mixing angles �. However both shifting
mechanisms of the subgap states in combination with di⇥erent
transmission probabilities for spin up and spin down lead to
similar behavior like the zero crossing when the subgap peaks
cross the Fermi energy (see FIG. 2), the increase while the
polarization increases and the symmetry with respect to the
axis. The quantitative di⇥erences are related to the di⇥erent
subgap band widths in the di⇥erent limits. For small spin-
dependent parameters the di⇥erence in magnitude is roughly a
factor of 5. The huge di⇥erence for bigger values can be under-
stood from the di⇥erent spin-mixing mechanisms shifting the
subgap peak and from the fact that the SBC in the dirty limit
is linearised in the polarisation strength. The local/nonlocal
parameters contributing to the thermopower are normalised
to their associated local/nonlocal normal state electrical con-
ductivity LqV

ij (T > TC). (VS = 0 ; T = TS = 0.1Tc)
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Quantum	
  circuit	
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  theory:	
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•  Spin-­‐dependent	
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Thermoelectricity:	
  
•  Spin-­‐splitng	
  +	
  spin-­‐polarized	
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  effect	
  
•  Maximizing	
  thermoelectric	
  efficiency	
  in	
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•  Non-­‐local	
  Seebeck	
  effect	
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