# TOPOLOGICAL BANDS IN GRAPHENE SUPERLATTICES

Berry curvature in superlattice bands
 Energy scales for Moire superlattices
 Spin-Hall effect in graphene

Leonid Levitov (MIT)

NPSMP2015 @ ISSP U Tokyo 15.06.2015



Justin Song



Polnop Samutpraphoot



Yuri Lensky



Andrey Shytov







Andre Geim

Geliang Yu

Roman Gorbachev

Song, Shytov, LL PRL 111, 266801 (2013) Song, Samutpraphoot, LL arXiv:1404.4019 (2014) Gorbachev, Song et al arXiv:1409.0113 (2014) Lensky, Song, Samuthrapoot, LL, arXiv:1412.1808 (2014)

NPSMP2015

### **Stacked Van der Waals heterostructures**

Stacked atomically thin layers: van der Waals crystals, atomic precision, axes alignment



3

## **Gap opening for G/hBN**



B. Hunt, et. al., Science, 340, 1430 (2013) (MIT Group) See also stanford and columbia groups



CR Woods, et.al. Nat. Phys (2014) (Manchester Group)

# Gap opening for G/hBN

#### Activated behaviour



See also stanford and columbia groups

### Activated behavior: gap $\Delta$ ~200-400 K

NPSMP2015

# Gap opening for G/hBN

#### Activated behaviour



See also stanford and columbia groups

### Activated behavior: gap $\Delta$ ~200-400 K

NPSMP2015

# **Valley index**





Internal degree of freedom Long-lived, inter valley scattering ≈ Hundreds of ps Valley current,  $J_{\kappa} - J_{\kappa'}$ Nonlocal measurements: Gorbachev, Song, et. al. Science 15(260d14) **NPSMP2015** 

# **Topological currents**

Electrons in crystals have charge, energy, momentum and Berry's curvature

Semiclassical eqs of motion:

$$\mathbf{v}_{\mathbf{k}} = \frac{1}{\hbar} \frac{\partial \epsilon_{\mathbf{k}}}{\partial \mathbf{k}} + \dot{\mathbf{k}} \times \Omega(\mathbf{k})$$
$$\dot{\mathbf{k}} = e\mathbf{E} + e\mathbf{v}_{\mathbf{k}} \times \mathbf{B}$$

# **Topological currents**

Electrons in crystals have charge, energy, momentum and Berry's curvature

 $\mathbf{v}_{\mathbf{k}} = \frac{1}{\hbar} \frac{\partial \epsilon_{\mathbf{k}}}{\partial \mathbf{k}} + \dot{\mathbf{k}} \times \Omega(\mathbf{k})$ Semiclassical eqs of motion:  $\mathbf{k} = e\mathbf{E} + e\mathbf{v}_{\mathbf{k}} \times \mathbf{B}$ Hall currents at B=0 E  $\odot B \neq 0$ B=0valley valley K'K15.06.20

# Graphene-based topological materials

Quantized transport, Topological bands, Anomalous Hall effects

Chern invariant

$$C = \frac{1}{2\pi} \sum_{k} \Omega(k)$$

$$\Omega(k) = \nabla_k \times A_k, \quad A_k = i \langle \psi(k) | \nabla_k | \psi(k) \rangle$$

## Graphene-based topological materials

Quantized transport, Topological bands, Anomalous Hall effects

Chern invariant

$$C = \frac{1}{2\pi} \sum_{k} \Omega(k)$$

$$\Omega(k) = \nabla_k \times A_k, \quad A_k = i \langle \psi(k) | \nabla_k | \psi(k) \rangle$$

Pristine graphene: massless Dirac fermions, Berry phase yet no Berry curvature

**NPSMP2015** 

$$\psi_{\pm,\mathbf{K}}(\mathbf{k}) = \frac{1}{\sqrt{2}} \begin{pmatrix} e^{-i\theta_{\mathbf{k}}/2} \\ \pm e^{i\theta_{\mathbf{k}}/2} \end{pmatrix}$$



# **Massive (gapped) Dirac particles**

A/B sublattice asymmetry a gap-opening perturbation Berry curvature hot spots above and below the gap

T-reversal symmetry:  $\Omega(-k) = -\Omega(k)$   $\Omega(k) \neq 0$ 

Valley Chern invariant (for closed bands)  $C = \frac{1}{2\pi} \sum_{k} \Omega(k)$ 

# **Massive (gapped) Dirac particles**

A/B sublattice asymmetry a gap-opening perturbation Berry curvature hot spots above and below the gap

T-reversal symmetry:  $\Omega(-k) = -\Omega(k)$   $\Omega(k) \neq 0$ 

Valley Chern invariant (for closed bands)

$$C = \frac{1}{2\pi} \sum_{k} \Omega(k)$$





## **Bloch bands in G/hBN superlattices**

Song, Shytov, LL, *PRL* **111**, 266801 (2013) Song, Samutpraphoot, LL, *PNAS* (2015)



Moiré wavelength  $\lambda_0$  can as large as 14nm  $\approx$ 100 times C-C spacing

## **Bloch bands in G/hBN superlattices**

Song, Shytov, LL, *PRL* **111**, 266801 (2013) Song, Samutpraphoot, LL, *PNAS* (2015)



Moiré wavelength  $\lambda_0$  can as large as 14nm  $\approx$ 100 times C-C spacing Focus on one valley, K or K'

NPSMP2015

# The variety of G/hBN superlattices:

San-Jose et al. arXiv:1404.7777, Jung et al arXiv:1403.0496, Song, Shytov LL PRL (2013), Kindermann PRB (2012) Sachs, et. al. PRB (2011)

### Incommensurate (moire) chirality/mass sign changing



Dea¼5·€€:â9.1№ature 497, 213 (2013) Ponomarenko et al Nature 497, 594 (2013) NPSMP2015

# The variety of G/hBN superlattices:

San-Jose et al. arXiv:1404.7777, Jung et al arXiv:1403.0496, Song, Shytov LL PRL (2013), Kindermann PRB (2012) Sachs, et. al. PRB (2011)

### Incommensurate (moire) chirality/mass sign changing



DeaऺऀॸऀॖҼऀऀ:ऄऀ<sup>9,1</sup>Nature 497, 213 (2013) Ponomarenko et al Nature 497, 594 (2013)

### Commensurate stacking global A/B asymmetry global gap



### vdW heterostructures

### New physics in stacked structures?



Stacked vdW materials exhibit spatial structure

AFM Spatial Map Large twist angle Small twist angle



CR Woods, et.al. Nat. Phys (2014)

## **Low-energy Hamiltonian**

San-Jose et al. arXiv:1404.7777, Jung et al arXiv:1403.0496, Song, Shytov LL PRL (2013), Kindermann PRB (2012) Sachs, et. al. PRB (2011)

 $\int \psi_i^{\dagger}(\mathbf{x}) [v\sigma\mathbf{p} + m(\mathbf{x})\sigma_3]\psi_i(\mathbf{x})$  $\mathcal{H} =$ i=1Constant global gap at DP a) b) 3  $m(\mathbf{x}) = \Delta + m \sum e^{i\mathbf{b}_j \cdot \mathbf{x}}$ i=1Spatially varying gap, Bragg scattering K'**Focus on one valley** Γ  $\tilde{K'}$ 

15.06.2015

NPSMP2015 Song, Samutpraphoot, LL arXiv (2014)

Incommensurate/Moire case  

$$\mathcal{H} = \int d^2x \sum_{i=1}^{N} \psi_i^{\dagger}(\mathbf{x}) [v\sigma \mathbf{p} + m(\mathbf{x})\sigma_3] \psi_i(\mathbf{x})$$

$$m(\mathbf{x}) = \Delta + m \sum_{i=1}^{6} e^{i\mathbf{b}_j \cdot \mathbf{x}}$$

$$\operatorname{sgn}(\Delta) = -\operatorname{sgn}(m)_{\text{Berry's Hux}, \Omega}$$

$$\stackrel{1/2}{=} 0$$



## Band topology tunable by crystal axes alignment Topological bands C=1 Trivial bands C=0





## **Future**

 Measure Chern numbers
 (separately gated regions for VHE injection and detection)

2) Waveguides for valley currents



3) Valley population accumulation (optical probes)

### Interactions in G/hBN superlattices

Incommensurability from lattice mismatch and twist angle impacts energy scales of superlattice structures



### **Interactions in G/hBN superlattices**

Incommensurability from lattice mismatch and twist angle impacts energy scales of superlattice structures

6

Oscillating gap 
$$m_3 \sum_{j=1}^{N} e^{i\mathbf{b}_j \cdot \mathbf{x}}$$
$$\mathcal{H} = \int d^2x \sum_{i=1}^{N} \psi_i^{\dagger}(\vec{x}) \left[ v\sigma \vec{p} + m_3(\vec{x})\sigma_3 + m_0(\vec{x}) \right] \psi_i(\vec{x})$$

$$+\frac{1}{2}\int d^2x \int d^2x' \frac{e^2}{\kappa |\vec{x} - \vec{x'}|} n(\vec{x}) n(\vec{x'}) \qquad \text{Interactions}$$

15.06.2015

NPSMP2015

### **Non-interacting theory**

(i) Oscillating  $m_3(\mathbf{x})$  gives a first order gap that vanishes, since  $\langle e^{i\mathbf{b}\cdot\mathbf{x}} \rangle = 0$ 

### **Non-interacting theory**

(i) Oscillating  $m_3(\mathbf{x})$  gives a first order gap that vanishes, since  $\langle e^{i\mathbf{b}\cdot\mathbf{x}} \rangle = 0$ 

(ii) A large gap at edge of Superlattice Brillouin Zone,  $\Delta_1 = 2m_3$ 

### **Non-interacting theory**

(i) Oscillating  $m_3(\mathbf{x})$  gives a first order gap that vanishes, since  $\langle e^{i\mathbf{b}\cdot\mathbf{x}} \rangle = 0$ 

- (ii) A large gap at edge of Superlattice Brillouin Zone,  $\Delta_1 = 2m_3$
- (iii) At 3rd order perturbation theory for obtain small gap (100 mK) at Dirac point:  $\Delta_0 = \frac{12m_3^3}{(v|\mathbf{b}|)^2}$

 $\mathbf{b}_3$ 

## **Interacting theory**

- (i) Interactions enhance both velocity and mass terms ( $\sigma_3$ )
- (ii) Scalar term  $m_0\sigma_0$  not enhanced due to Ward Identity  $\Gamma Z = 1$  follows from gauge invariance

Can obtain giant enhancements to 3rd order gap at Dirac point,  $\Delta_0$ , as large as **three orders** of magnitude.

### A two-stage RG flow



### **RG Flow of interaction enhanced couplings to Moiré potential**



(I) Sensitivity to  $\lambda_0$  (controlled by twist angle) and screening (controlled by gates)

(I) Sensitivity to  $\lambda_0$  (controlled by twist angle) and screening (controlled by gates)

# (ii) Gap can be as large as room temperature

(I) Sensitivity to  $\lambda_0$  (controlled by twist angle) and screening (controlled by gates)

# (ii) Gap can be as large as room temperature

(iii) Gap is sensitive to cut-off length scale and can be smeared out by charge puddles

(I) Sensitivity to  $\lambda_0$  (controlled by twist angle) and screening (controlled by gates)

# (ii) Gap can be as large as room temperature

(iii) Gap is sensitive to cut-off length scale and can be smeared out by charge puddles

(iv) For self-terminated RG, get gap that scales

$$\Delta_0(\lambda_*) \propto \left(rac{\lambda_0}{a}
ight)^\gamma ~~\gamma = 0.27$$
 (one loop large-N)

# **Spintronics in graphene?**

### Slow spin relaxation due to weak SO in graphene



# **Electronic spin transport and spin precession in single graphene layers at room temperature**

Nikolaos Tombros<sup>1</sup>, Csaba Jozsa<sup>1</sup>, Mihaita Popinciuc<sup>2</sup>, Harry T. Jonkman<sup>2</sup> & Bart J. van Wees<sup>1</sup>

### Slow spin relaxation due to weak SO in graphene

**Electronic spin transport and spin precession in single** 

BUT: short spin lifetimes w ferromagnets

### Slow spin relaxation due to weak SO in graphene

### **Electronic spin transport and spin precession in single**

### BUT: short spin lifetimes w ferromagnets



nature

### Half-metallic graphene nanoribbons

Young-Woo Son<sup>1,2</sup>, Marvin L. Cohen<sup>1,2</sup> & Steven G. Louie<sup>1,2</sup>

#### LETTERS

Valley filter and valley valve in graphene

A. RYCERZ<sup>1,2</sup>, J. TWORZYDŁO<sup>3</sup> AND C. W. J. BEENAKKER<sup>1\*</sup>

### Slow spin relaxation due to weak SO in graphene



### BUT: impossible to make (edge disorder)

### Slow spin relaxation due to weak SO in graphene



### BUT: impossible to make (edge disorder)

# **Spin-Hall effect without spin-orbit**

-Large value, persists at room T and low B

-Stems from Dirac spectrum

 $\theta_{SH} \approx 0.1$ 



Zeeman-split bands  $\mathcal{E}_{\uparrow(\downarrow)}(k) = vk \pm \delta/2$ 

Finite density of electrons and holes 15.06.2015

## **SHE mechanism**



### Opposite Lorentz force on the up-spin and down-spin Spin current in a transverse direction

## **SHE mechanism**



Opposite Lorentz force on the up-spin and down-spin Spin current in a transverse direction

SHE coefficient 
$$\theta_{SH} = \frac{\rho_{SH}}{\rho_{xx}} \propto \rho_{xy}^{\uparrow} - \rho_{xy}^{\downarrow} \approx \frac{d\rho_{xy}}{d\mu} \Delta$$
  
 $\Delta$  the Zeeman splitting

7

## **SHE mechanism**



Opposite Lorentz force on the up-spin and down-spin Spin current in a transverse direction

SHE coefficient 
$$\theta_{SH} = \frac{\rho_{SH}}{\rho_{xx}} \propto \rho_{xy}^{\uparrow} - \rho_{xy}^{\downarrow} \approx \frac{d\rho_{xy}}{d\mu} \Delta$$
  
 $\Delta$  the Zeeman splitting

### **Need to understand Hall resistivity**

# Steep pxy, giant SHE

Abanin et al. PRL 2011

Quasiclassical result:

$$\rho_{xy} = -\frac{B}{ne}$$



Diverges at the Dirac point Singularity smeared by disorder and interactions

Steepening 
$$\rightarrow$$
 large  $\frac{d\rho_{xy}}{d\mu} \rightarrow$  giant SHE at the Dirac point

# **Predict SHE coefficient**



## **Nonlocal measurement**





Good agreement w theory: -Peak at the Dirac point -Growth as a function of 1/T, B -Magnitude

Abanin et al, Science 2012

## **Future**

-Predict large spin accumulation:  $n_s = 1.5 \times 10^{11} cm^{-2}$  100000 times larger than GaAs

-Generate/detect spin currents using local magnetic fields



-Spin injection into graphene and other materials

Abanin et al. PRL (2011), Science (2012)

NPSMP2015