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Stacked Van der Waals heterostructures

Stacked atomically thin layers: van der Waals crystals, 
atomic precision, axes alignment Image from: Geim & Grigorieva, 

Nature 499, 419 (2013)
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Gap opening for G/hBN
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Gap opening for G/hBN

Activated behavior: gap ~200-400 K
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Gap opening for G/hBN

Activated behavior: gap ~200-400 K
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Valley index

Nonlocal measurements: Gorbachev, Song, et. al. Science 
(2014)
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Topological currents
Electrons in crystals have charge, energy, 
momentum and Berry's curvature

Semiclassical 
eqs of motion:
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Topological currents
Electrons in crystals have charge, energy, 
momentum and Berry's curvature

Semiclassical 
eqs of motion:

Hall currents at B=0
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Graphene-based topological 
materials

Quantized transport, Topological bands, Anomalous 
Hall effects

Chern invariant C=
1

2π
∑k

Ω(k )

Ω(k )=∇ k×Ak , Ak=i〈 ψ(k)∣∇ k∣ψ(k )〉
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Graphene-based topological 
materials

Quantized transport, Topological bands, Anomalous 
Hall effects

Chern invariant C=
1

2π
∑k

Ω(k )

Ω(k )=∇ k×Ak , Ak=i〈 ψ(k)∣∇ k∣ψ(k )〉

Pristine graphene: massless Dirac fermions, Berry 
phase yet no Berry curvature
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Massive (gapped) Dirac particles

A/B sublattice asymmetry a gap-opening perturbation
Berry curvature hot spots above and below the gap

Valley Chern invariant
(for closed bands)

C=
1

2π
∑k

Ω(k )

Ω(k )≠0T-reversal symmetry: Ω(−k )=−Ω(k )
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Massive (gapped) Dirac particles

A/B sublattice asymmetry a gap-opening perturbation
Berry curvature hot spots above and below the gap

Valley Chern invariant
(for closed bands)

C=
1

2π
∑k

Ω(k )

D. Xiao, W. Yao, and Q. Niu, PRL 99, 236809 (2007)

Ω(k )≠0T-reversal symmetry: Ω(−k )=−Ω(k )
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Bloch bands in G/hBN superlattices

Song, Shytov, LL, PRL 111, 266801 (2013)

Song, Samutpraphoot, LL, PNAS (2015)

Moiré wavelength       can as large as 14nm ≈100 times 
C-C spacing
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Bloch bands in G/hBN superlattices

Song, Shytov, LL, PRL 111, 266801 (2013)

Song, Samutpraphoot, LL, PNAS (2015)

Moiré wavelength       can as large as 14nm ≈100 times 
C-C spacing

Focus on one valley, K or K'
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The variety of G/hBN superlattices:

Incommensurate (moire)
chirality/mass sign 
changing

San-Jose et al. arXiv:1404.7777, Jung et al arXiv:1403.0496, Song, Shytov LL PRL (2013), Kindermann PRB 
(2012) Sachs, et. al. PRB (2011)

Dean et.al. Nature 497, 213 (2013)
Ponomarenko et al Nature 497, 594 (2013)
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The variety of G/hBN superlattices:

Commensurate stacking
global A/B asymmetry 
global gap

Incommensurate (moire)
chirality/mass sign 
changing

Woods, et.al. Nature Phys 10, 451 (2014)

San-Jose et al. arXiv:1404.7777, Jung et al arXiv:1403.0496, Song, Shytov LL PRL (2013), Kindermann PRB 
(2012) Sachs, et. al. PRB (2011)

Dean et.al. Nature 497, 213 (2013)
Ponomarenko et al Nature 497, 594 (2013)
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Low-energy Hamiltonian

Constant global gap at DP

Spatially varying gap, 
Bragg scattering

Focus on one valley

Song, Samutpraphoot, LL arXiv (2014)

San-Jose et al. arXiv:1404.7777, Jung et al arXiv:1403.0496, Song, Shytov LL PRL (2013), 
Kindermann PRB (2012) Sachs, et. al. PRB (2011)
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Incommensurate/Moire case
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Commensurate case
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Band topology tunable by crystal 
axes alignment

Topological bands C=1 Trivial bands C=0
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Future

1) Measure Chern numbers 
(separately gated regions for
VHE injection and detection)

2) Waveguides for valley 
currents

3) Valley population accumulation 
(optical probes)

(V
H

E
)

(R
V

H
E

)

Valley Current 
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Interactions in G/hBN superlattices

Incommensurability from 

lattice mismatch and twist 

angle impacts energy scales 

of superlattice structures
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Interactions in G/hBN superlattices

Interactions

Oscillating gap 

Incommensurability from 

lattice mismatch and twist 

angle impacts energy scales

of superlattice structures
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Non-interacting theory

(i) Oscillating            gives a first order gap 
that vanishes, since                 
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Non-interacting theory

(i) Oscillating            gives a first order gap 
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(ii) A large gap at edge of Superlattice 
Brillouin Zone, 
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Non-interacting theory

(i) Oscillating            gives a first order gap 
that vanishes, since                 

(ii) A large gap at edge of Superlattice 
Brillouin Zone, 

(iii) At 3rd order perturbation theory for 

obtain small gap (100 mK) 

at Dirac point:
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Interacting theory

(i) Interactions enhance both velocity and 

mass terms (    ) 

(ii) Scalar term          not enhanced due to Ward 

Identity             follows from gauge invariance 

Can obtain giant enhancements to 3rd order 

gap at Dirac point,      , as large as three orders 

of magnitude.
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A two-stage RG flow

RG Equations: Stage 1: Stage 2:
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RG Flow of interaction enhanced 
couplings to Moiré potential
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Interaction enhanced gap features

(I) Sensitivity to       (controlled by twist 
angle) and screening (controlled by gates)
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Interaction enhanced gap features

(ii) Gap can be as large as room 
temperature

(I) Sensitivity to       (controlled by twist 
angle) and screening (controlled by gates)



15.06.2015 NPSMP2015 34

Interaction enhanced gap features

(iii) Gap is sensitive to cut-off length scale 
and can be smeared out by charge puddles

(ii) Gap can be as large as room 
temperature

(I) Sensitivity to       (controlled by twist 
angle) and screening (controlled by gates)
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Interaction enhanced gap features

(iii) Gap is sensitive to cut-off length scale 
and can be smeared out by charge puddles

(iv) For self-terminated RG, get gap that scales

(one loop 
large-N)

(ii) Gap can be as large as room 
temperature

(I) Sensitivity to       (controlled by twist 
angle) and screening (controlled by gates)
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Spintronics in graphene?
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Spin manipulation in graphene
Slow spin relaxation due to weak SO in graphene
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BUT: short spin lifetimes w ferromagnets
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Spin manipulation in graphene
Slow spin relaxation due to weak SO in graphene

BUT: impossible to make (edge disorder)

BUT: short spin lifetimes w ferromagnets
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Spin manipulation in graphene
Slow spin relaxation due to weak SO in graphene

BUT: impossible to make (edge disorder)

BUT: short spin lifetimes w ferromagnets

NEW WAYS TO GENERATE & DETECT  
SPIN/VALLEY CURRENTS?
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Spin-Hall effect without spin-orbit
-Large value, persists at room T and low B

-Stems from Dirac spectrum 1.0SH

Zeeman-split bands

Finite density of electrons and holes 
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SHE mechanism

Opposite Lorentz force on the up-spin and down-spin
Spin current in a transverse direction
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SHE mechanism
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Spin current in a transverse direction
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SHE mechanism

Opposite Lorentz force on the up-spin and down-spin
Spin current in a transverse direction
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 the Zeeman splitting

Need to understand Hall resistivity

SHE coefficient
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Steep xy, giant SHE

Quasiclassical result:

ne

B
xy 

Diverges at the Dirac point  

Singularity smeared by 

disorder and interactions

Steepening large          giant SHE at the Dirac point  
         

                                                                 

)( kxy

carrier density



d

d xy

Abanin et al. PRL 2011



15.06.2015 NPSMP2015 47

Predict SHE coefficient

-Grows with B and inverse T

-Saturates at DP width 

-Large enhancement 

in clean samples
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Nonlocal measurement

-Peak at the Dirac point
-Growth as a function of 1/T, B
-Magnitude

Good agreement w theory:
-Peak at the Dirac point
-Growth as a function of 1/T, B
-Magnitude

Abanin et al, Science 2012
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Future

-Predict large spin accumulation: 

-Generate/detect 

spin currents using

local magnetic fields

-Spin injection into graphene and other 
materials

               

211105.1  cmns
100000 times larger than GaAs

 

               

Abanin et al. PRL (2011), Science (2012)
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