Spintronics Beyond Magnetoresistance: Putting Spin in Lasers

University at Buffalo, State University of New York

Undergrad. Students : Evan Wasner, Sean Bearden, William Falls Graduate Students: Jeongsu Lee, Christian Gothgen, Paulo Faria Junior, Guilhem Boeris, Gaofeng Xu Postdocs: Rafal Oszwaldowski, Karel Vyborny Sabbatical Visitor: Guilherme Sipahi (U. Sao Paulo)

Outline

- Overview, History, Background
- Spin Diodes
- Conventional and Spin Lasers
 Analogies: Bucket, Harmonic Oscillator
- Spin Interconnects

Now and Then

Hard Disk Drives: >200 Gbits/cm² >500 Mbits/sec < \$0.0005/Mb

Operating Principles?

High Resistance

Spin-Valve Effect polarizer-analyzer analogy

Typically Unipolar Devices linear regime, no Poisson eq. only electrons

N< normal metal – giant magnetoresistance (GMR) insulator – tunneling magnetoresistance (TMR)

replacing AIO by MgO 10-fold increase in TMR

S. S. P. Parkin et al., Nature Mater. **3**, 862 (2004) S. Yuasa, et al., Nature Mater. **3**, 868 (2004)

graphene: low-resistance tunnel barrier

spin-orbit: Anisotropic MR (AMR) back in 1857 Lord Kelvin

TMR: Some History

Late 60s P. Fulde ("F" from FFLO): what about F I S Tunneling?

F I S Tunneling Influence:

1975 M. Julliere 1st TMR Report not reproduced (Ge insulator); simple TMR model

- 1982 S. Maekawa, U. Gafvert 1st reproducible TMR (NiO insulator)
- 1976, 1977 A. G. Aronov, G. E. Pikus, theory of electrical spin injection
- 1980 R. H. Silsbee: 1985- with M. Johnson, electrical spin injection (concept & exps) can spin be transported away from a magnetic interface?

Limited interest until TMR @ 300 K in mid 90s J. Moodera et al.; Miyazaki and Tezuka related references in Rev. Mod. Phys. 76, 323 (2004)

Using 3rd Dimension: Magnetic Racetrack

Domain Walls vs Skyrmions?

A. Fert, Nature Nanotech. 2013 also talk R. Wiesendanger – skyrmions @ 300 K

Semiconductor Spintronics?

- Started early, but did not get very far Datta-Das (1990) vs GMR (1988)
- Are there other opportunities?

 Yes, collaborators of A. Fert are exploring them Good track record: two-current model, SHE, skyrmions, GMR,...

Spin FET

illustrates generic elements & challenges for spin logic devices (magnetic) heterojunction -- building block

I. Zutic, J. Fabian, S. Das Sarma, RMP 76, 323 (2004)

Generating Spin Imbalance

Transfer of Angular Momentum: Carriers, Excitations, Photons, Nuclei

Optical Spin Injection (Orientation)

Electrical Spin Injection

Spin-Orbit Coupling (Friend & Foe)

spin-polarized electrons & holes have different spin dynamics

G. Lampel, PRL 1967 NMR Detection in Si!

Pairing Symmetry QHE Skyrmions Spin-Charge Separation Spin-Momentum Locking

- S. A. Kivelson, D. S. Rokhsar, PRB 1990
- Q. Si, PRL 1997,

H. B. Chan et al. & A. H. MacDonald, PRL 1997 Several Symposium Talks

Electrical Spin Injection

spin diffusion length

m (GaAs, Si, >Graphene...)

metals ~ 1 nm graphene ~ 50 nm (not negligible) P. Lazic et al., PRB 90, 085429 (2014)

Spin Injection & Detection in Lateral Spin Valves

Bipolar Spintronics

Experiments:

simultaneous presence of electrons & holes

spin LEDs spin p-n junctions spin photo-diodes magnetic bipolar transistors spin lasers

electron-hole recombination/generation

J. Sinova, I. Zutic Nature Mater. 11, 368 (2012) holes loose spin faster than electrons there are exceptions, like MoS_2

Optical Spin Injection and Detection

Splitting between HH & LH ?
In QW (strain + confinement)
$$\frac{|\langle 1/2, -1/2 | Y_1^1 | 3/2, -3/2 \rangle|^2}{|\langle 1/2, 1/2 | Y_1^1 | 3/2, -1/2 \rangle|^2} = 3$$

degeneracy lifted

I. Zutic, J. Fabian, S. Das Sarma, RMP 76, 323 (2004) F. Meier and B. P. Zakharchenya, Optical Orientation, Elsevier (1984)

Spin LEDs

Basic Elements:

- Spin Injection
- Spin Transport
- Spin Relaxation
- **Spin Detection**

23 Feb. 1999

Talk Y. Iwasa

Prediction of Spin-Voltaic Effect

1st Spin-Photo Diode (experimental demonstration)

optical spin injection & electrical detection

T. Kondo et al., Jpn. J. Appl. Phys. 45, L663 (2006)

Lasers ?

Optical Communication

Optical Media

Medicine

Art

Military

Why Spin Lasers?

 Operation Not Limited to Magnetoresistance (unexplored effects and applications)

 Transfer Carrier Spin Information to Photons to Travel Faster (v=c) and Farther (>>L_S) Talk of A. Oiwa single electrons/photons

 Moore's Law: Energy Consumption Increasingly Dominated by Communication not Logic (Transistors)
 – Spin Lasers for Optical Interconnects

Lasers 101

- INPUT: Injecting/Pumping Carriers (population inversion)
- OUTPUT: Emitted Light of Coherent Photons

Rate Equations:

[Gain] Stimulated emission/absorption

Adding Spin & Light Polarization: $J_{+,-}$ $n_{+,-}$ $S^{-,+}$

History and Future of Lasers?

Threshold Reduction: reduced dimensionality (quantum wells, dots,...) lower power consumption, improved dynamic performance,... 105 Nobel Lecture: 4.3 kA/cm² Z. I. Alferov, RMP (2001) 104 (1968)Impact of double heterostructures J_{th} (A/cm²) ₇₀₁ (A/cm²) Impact of quantum wells 900 A/cm² (1970 Impact of 160 AJcm2 quantum dots (1981)40 A/cm² (1988)10 19 A/cm² (2000)Impact of SPSL QW 1960 65 70 75 80 85 90 95 2000 Years

Threshold Reduction: alternative mechanisms (polaritons, spins,...)

Spin Lasers

Typically VCSELs Vertical Cavity Surface Emitting Lasers

J. Sinova, I. Zutic Nature Mater. 11, 368 (2012) Transfer of angular momentum !

Experiments: Spin Makes a Difference

Injected Spin-Polarized Carriers: Lasing Threshold Reduction

Electrical Spin Injection

Optical Spin Injection (circularly polarized light S⁺, S⁻)

CW operation demonstrated in both Quantum Well and Quantum Dotbased spin-lasers

J. Rudolph et al., Appl. Phys. Lett. 87, 241117 (2005)

Other work: S. Hallstein et al., PRB (1997), H. Ando et al., APL (1998); S. Hovel et al., APL (2008)

Electrical Operation at 300 K?

Problem: injected spin loses orientation before reaching the active region, several mm away

Solution: integrate magnets in the active region spin-filtering at the GaN/Fe $_3O_4$ interface

J.-Y. Cheng et al., Nature Nanotech. 9, 845 (2014)

GaN LEDs 2014 Nobel Prize in Physics

Bias-Tunable Spin Polarization, Limitations?

J.-Y. Cheng et al., Nature Nanotech. 9, 845 (2014)

Reducing Transfer Length: External Cavity

J. Frougier et al. Opt. Expr. 23 9573 (2015) collaborators of A. Fert

Bucket Model of Lasers

J. Lee, W. Falls, R. Oszwałdowski, and I. Žutić, APL **97**, 041116 (2010) C. Gøthgen, R. Oszwałdowski, A. Petrou, I. Žutić, APL 93, 042513 (2008)

Spin-Filtering Experiments

S. Iba, S. Koh, K. Ikeda, and H. Kawaguchi, APL 98, 081113 (2011)

Dynamic Operation of Spin-Lasers

J₊ (Spin Up) - Hot Water J_ (Spin Down) - Cold Water

J. Lee et al, APL 97, 041116 (2010)

$$J = J_+ + J_-, P_J = \frac{J_+ - J_-}{J_+ + J_-}$$

• Amplitude Modulation (AM): $J(t)=J_0+$ Jcos(t) & $P_J(t)=P_{J0}$

• Polarization Modulation (PM): $J(t)=J_0 \& P_J(t)=P_{J0}+P_Jcos(t)$

Harmonic Oscillator, Resonance, Bandwidth

• Lasers – driven & damped harmonic oscillators

injection – extra carrier and photon densities through damped oscillations relax to their steady-state values so-called relaxation oscillation frequency, W_R

$$m\ddot{x} + c\dot{x} + kx = F_{\circ}e^{i\omega t}$$
$$x(t) = \operatorname{Im}\left[Ae^{i(\omega t - \phi)}\right] = A\sin\left(\omega t - \phi\right)$$

$$A = \frac{F_{\circ}}{\left[\left(k - m\omega^2\right)^2 + c^2\omega^2\right]^{\frac{1}{2}}}$$

Large W - Small A

Higher resonant frequency – higher bandwidth!

Small Signal Analysis: Enhanced Bandwidth

- Frequency Response Function $|R()| = \left| \frac{S}{\int f()} \right|$
- Normalized Frequency Response $\frac{|R()|}{|R(0)|} = \frac{\frac{R^2}{R^2}}{\left[\frac{R^2}{R^2} - \frac{R^2}{2}\right]^2}$

driven, damped Harmonic Oscillator

3-dB bandwidth
$$R^{/2}$$

 $R^{2} [J(\mathbf{1}+P|_{J0}/2) - J_{T}]$

Injection polarization enhanced bandwidth

Spin Relaxation Time: Longer is Better?

Common Understanding: longer spin relaxation time better for spintronics

Not so simple, short t_s can improve operation

Threshold Reduction: max 50% (bucket model)

J. Lee, E. Wasner, S. Bearden, and I. Zutic, APL 105, 042411 (2014)

Large Signal Analysis: Digital Operation

Conventional Laser (P_J=0) Step-Like Injection

Overshoot in carrier & photon densities, damped oscillations to steady state

Can we decrease t_g and get a better step-like (digital) output ?

J. Lee et al., APL 105, 042411 (2014)

Large Signal Analysis: Decay Time

Spin Laser (P_J=1) Step-Like Injection

J. Lee et al., APL 105, 042411 (2014)

Spin Lasers: Minimum Decay Time

 $= \frac{t_{g}^{0}/2 \quad t_{sp} = 0}{t_{g}^{0}/3 \quad t_{sn} = t_{sp}}$

tg^{MIN}

Optimal Performance: short, NOT long spin relaxation time!

$$1/t_g = 1/t_g^0 + 1/t_g^S$$

spin-independent spin-dependent

Interconnects Bottleneck !

Conventional Lasers already used for High-Performance Optical Interconnects

Potential advantages of Spin Lasers:

- •Smaller Chirp (distortion) switching at fixed injection!
- •Shorter Turn On Time
- Enhanced Light Emission
- Improved Stability
- Secure Communication
- •Reconfigurable Interconnects

M. Aljada et al., Optics Express 15, 6823 (2006)

Other Ideas? 3D TV, Spin-Interconnects,...

E. Wasner, S. Bearden, J. Lee, and I. Zutic, preprint

Silicon Spin Interconnects (On Chip)

metallic interconnects: dynamical cross-talk, RC bottlenecks, electromigration,...

Si – long spin relaxation times (~10 ns @ 300 K), transfer length >100mm B. Huang et al., APL 93, 162508 (2008) other candidates: Ge, graphene

Effective bandwidth **100-1000 x greater** than in metallic interconnects

H. Dery, Y. Song, P. Li, I. Žutić, APL 99, 082502 (2011)

Other Opportunities ?

A. Khaetskii, V. N. Golovach, X. Hu, I. Žutić, PRL 111, 186601 (2013)

Phonon Laser also proposed in Nanomagnets

E. M. Chudnovsky and D. A. Garanin, PRL 93, 257205 (2004)

Ultra-Fast Spin Lasers?

Polarization can be modulated faster than intensity H. Hopfner et al., APL **104**, 022409 (2014)

Conclusions & Perspectives

- semiconductors highly nonlinear response: not limited to magnetoresistace
- optimal digital operation for short spin relaxation times
- our microscopic analysis: spin-laser faster than the best P_J=0 lasers

FeCoB-MgO S. Ikeda et al., Nature Mater. (2010)

Ultra-Fast Magnetization Switching

more on spintronics, lasers HANDBOOK OF SPIN TRANSPORT AND MAGNETISM 39 chapters, including overview by Albert Fert EVGENY

Optical Gain

$$g^a(\omega) = -\frac{\omega}{cn_r}\epsilon^a_i(\omega)$$

Optical Gain

Spin Solar Cell ("Battery") Spin EMF

00

Ο

00

 \cap

- spin up electrons
- spin down electrons

unpolarized holes

A source of spin-dependent current & voltage

E

Inhomogeneous doping and carrier density: important to self-consistently solve Poisson & drift-diffusion equations

Spin Injection Hall Effect: Transverse Photo-Induced Voltage J. Wunderlich et al., Nature Phys. 5 (2009)

Longitudinal & Transverse Voltage

spin imbalance & V_{H} spin-dependent scattering due to spin-orbit coupling

Phys. Lett. 35A, 459 (1971)

S. O. Valenzuela, M. Tinkham Nature 442, 176 (2006)

Magnetic Bipolar Transistor

J. Fabian and I. Zutic, PRB 69, 115314 (2004) APL 84, 85 (2004), APL 86, 133506 (2005)

Magnetic Bipolar Transistor: Experiment

using nonequilibrium spin and control of ferromagnetism

