

Spin transport and relaxation mechanism in disordered organic film

<u>Motoi Kimata^{1,} Daisuke Nozaki¹, Yasuhiro Niimi¹, Hiroyui Tajima², YoshiChika Otani^{1, 3}</u>

¹Institute for Solid State Physics, University of Tokyo ²Graduate School of Materials Science, University of Hyogo ³Center for Emergent Matter Science, RIKEN

Organic spintronics

• Organic semiconductors consist of relatively light elements.(For example, C, H, O, S, ...)

427, 821 (2004).

6T

Organic spintronics

Motivation

• Comprehensive study of **pure spin transport** mechanism in organic semiconductors with **strong disorder**

• Experimental investigation of characteristic spintransport parameters

Charge transport

Conducting polymer PEDOT:PSS

PEDOT is doped with PSS.

- Dopant density: $\sim 10^{20}$ - 10^{21} /cm³
- Carrier: Hole of PEDOT
- Resistivity
- ~1 Ωcm (in-plane)
- ~10³ Ω cm (out-of-plane)

Water-based solution of PEDOT: PSS

Conducting polymer PEDOT:PSS

Nano-scale core-shell structure of PEDOT:PSS

Highly doped OSC with strong disorder

Spin pumping & ISHE measurement in Py/PEDOT:PSS/Pt trilayers

S. Mizukami, *et.al.*, PRB **66**, 104413 (2002). E. Saitoh, *et.al.*, APL **88**, 182509 (2006).

is detected as a voltage signal at the Pt layer.

Spin pumping & ISHE measurement in Py/PEDOT:PSS/Pt trilayers

PEDOT:PSS thickness dependence of VISHE

$$V_{\rm ISHE} \propto J_{\rm S}(t_{\rm PE}) \approx J_{\rm S}(0) \exp(\frac{t_{\rm PE}}{\lambda_{\rm PE}}) [1-\tanh(\frac{t_{\rm PE}}{\lambda_{\rm PE}})]$$

Spin diffusion length of PEDOT:PSS = 140 ± 20 nm

Comprehensive study of spin transport

Charge transport

Charge transport measurement

Insulating behavior below room temperature

Charge transport measurement

Charge transport measurement

Variable range hopping (VRH) conduction

Einstein relation for VRH conduction

- Electron transport is dominated by tunneling process between metallic localized states.
- Hopping probability (\propto conductivity) is proportional to the $N(E_{\rm F})$ of the localized states.

G. Paasch, et. al., Synth. Met. 132 (2002) 97.

Einstein relation for VRH conduction

- Electron transport is dominated by tunneling process between metallic localized states.
- Hopping probability (*c*conductivity) is proportional to

the $N(E_{\rm F})$ of the localized states.

 $N(E_{\rm F}) \approx 1 \times 10^{18} \, [{\rm eV^{-1} cm^{-3}}]$

Cf) $D_{
m S}pprox 2{ imes}10^2\,{
m cm^2/s}$ for pure Cu and Ag

 $\sigma = e^2 N(E_{\rm F}) D_{\rm S} \longrightarrow D_{\rm S} = 7 \times 10^{-3} \text{ cm}^2/\text{s}$

Comprehensive study of spin transport

ESR experiment of PEDOT:PSS film

ESR experiment of PEDOT:PSS film

Comprehensive study of spin transport

How is the relation between $\tau_{s}^{transport}$ and T_{1} ?.

Comparison between $\tau_{S}^{transport}$ and T_{1}

Spin transport and relaxation mechanism in PEDOT:PSS

- Spin angular momentum is almost preserved in the hopping event.
- Spin relaxation mostly occurs in the trapping process.

M. Kimata, et. al., PRB accepted.

Summary

• Comprehensive study of spin transport in highly doped disordered polymer film PEDOT:PSS was performed.

