Waiting for rare entropic fluctuation in mesoscopic physics

Keiji Saito (Keio University)

Abhishek Dhar (ICTS)

Content

- 1. Counting statistics
- 2. Information from fixed time statistics
- 3. From fixed time to fixed Q statistics
- 4. Summary and outlook

1. Counting statistics

- \diamondsuit Statistics given at the "fixed" time Probability P(Q)
 - Cumulants $\langle Q^n \rangle_c$

 \diamondsuit One expects "information" from "fixed time statistics"

Examples of experiment

♦ Distribution of transmitted charge

2. Information from "fixed time statistics"

Finite temperature ? Fluctuation relation What is this ?

Fluctuation relation at the finite temperature

♦ Robust relation derived from time reversal symmetry

- Current context

$$P(-Q) \sim e^{-Q\beta\Delta V} P(Q)$$

- Entropy context (general)

$$P(-S) = e^{-S} P(S)$$

♦ This reproduces linear response results and predicts nonlinear response

Def.
$$\langle Q^n \rangle_c / \tau := \sum_k L_{n,k} (\beta \Delta V)^k / k!$$

- FDT (Kubo formula) $L_{1,1} = L_{2,0}/2$

- Nonlinear response, e.g., $L_{1,2} = L_{2,1}$

Today's talk

3. From fixed time to fixed Q statistics

 \diamondsuit So far, statistics at the fixed time

- Questions -
- What is fixed Q statistics?
- How formulated ?

Relation between fixed time and fixed Q physics?

fixed Q statistics fixed time statistics

♦ Mathematically unambiguous statistics

: First passage time distribution (FPTD) to get Q

The simplest FPTD: random walk

 $\diamondsuit \text{ First passage time distribution (FPTD) to reach X}$ $\mathcal{F}_{rw}(X,t) = \frac{|X|e^{-\frac{(X-I_1t)^2}{2I_2t}}}{\sqrt{2\pi I_2t^3}} \longrightarrow e^{-\frac{I_1^2}{2I_2}t - \frac{3}{2}\log t}$

The FPTD for entropic variables

Several models

(a) Thermally hopping electronic systems

Experiments S. Toyabe et al., Nature Physics(2010) V. Blickle et al., PRL (2007)

FPTD for winding number

(b) Charge transfer via quantum dot (classical transport)

Experiments

T. Fujisawa et al., Science (2006)

B. Kung et al. , Phys. Rev. X (2012)

FPTD for charge transfer

(c) Heat transfer via coupled spring system

 β_L \sim

J. R. Gomez-Solano, Europhys Lett.(2010)

S. Ciliberto et al., PRL (2013)

FPTD for heat transfer

Model (a): thermally hopping electronic system The FPTD for the winding number

Counting the number of passing the line: n

 $T_{j \leftarrow i}(n, t)$: transition probability $(j, n) \leftarrow (i, 0)$ t t = 0

 $F_{j \leftarrow i}(n, t)$: FPTD to get the pair $(j, n) \leftarrow (i, 0)$

 \diamondsuit FPTD for winding number ${\cal N}$

$$\mathcal{F}(\mathcal{N},t) = \sum_{i} F_{j \leftarrow j} (n = \mathcal{N},t) P_{j}^{SS}$$

Asymptotic behaviour of the FPTD

 \diamond Solving T and F with several basic equation like $T_{j\leftarrow i}(n,t) = \int_0^t du \, T_{j\leftarrow j}(0,t-u) F_{j\leftarrow i}(n,u)$

Asymptotic behaviour
Use of fluctuation relation symmetry yields

$$\mathcal{F}_{asym}(t) = A(\mathcal{N}) \exp\left(-\Gamma t - (3/2)\log t\right)$$

$$\Gamma = \frac{I_1^2}{2I_2} + \frac{I_3I_1^3}{6I_2^3} + \frac{(3I_3^2 - I_2I_4)I_1^4}{24I_2^5} + \cdots$$

$$I_k = \langle \mathcal{N}^k \rangle_c / \tau \Big|_{\tau \to \infty}$$

Crucial observation on asymptotic behaviour

$$\mathcal{F}_{asym}(\mathcal{N}, t) = A(\mathcal{N}) \exp\left(-\Gamma t - (3/2)\log t\right)$$

$$\Gamma = \frac{I_1^2}{2I_2} + \frac{I_3 I_1^3}{6I_2^3} + \frac{(3I_3^2 - I_2 I_4)I_1^4}{24I_2^5} + \cdots$$

$$I_k = \langle \mathcal{N}^k \rangle_c / \tau \Big|_{\tau \to \infty}$$

- 1. Asymptotic behaviour does not depend on \mathcal{N} (even negative winding follows the same form)
- 2. Relaxation rate is written with cumulants
- 3. First order reproduces random walk picture valid for linear response (small I_1)
- 4. (3/2)log t correction

Numerical demonstration

♦ Normalized FPTD for winding number

This asymptotic expression is general

$$\mathcal{F}_{asym}(\mathcal{X}, t) = A(\mathcal{X}) \exp\left(-\Gamma t - (3/2)\log t\right)$$

$$\Gamma = \frac{I_1^2}{2I_2} + \frac{I_3I_1^3}{6I_2^3} + \frac{(3I_3^2 - I_2I_4)I_1^4}{24I_2^5} + \cdots$$

$$I_k = \langle \mathcal{X}^k \rangle_c / \tau \Big|_{\tau \to \infty}$$

 ${\mathcal X}$ is a physical quantity proportional to entropy production

(a) Thermally hopping electronic systems $\mathcal{X} =$ winding number

(b) Charge transfer via quantum dot

 $\mathcal{X} = charge transfer$

(c) Heat transfer via coupled spring system $\mathcal{X} = \text{heat transfer}$

Numerical demonstration

Summary

 \diamond We considered fixed target value statistics

- \diamondsuit The first passage time distribution was studied (FPTD)
- \Diamond The FPTD is connected to fixed time statistics
 - in asymptotic behaviour
- \Diamond Asymptotic behaviour has universal expression

Thank you for attention !