Fractional-Quasiparticle Creation

in a Local Fractional Quantu Take-Home Message measured using cross-correlation noise measured

Masayuki Hashisaka¹

Collaborators: T. Ota¹, K. Muraki², T. Fujisawa¹

¹Tokyo Institute of Technology ²NTT Basic Research Laboratories

Introduction: Target of this work

Electron transport in mesoscopic systems

Quantum mechanics Many-body physics

1 nA Typ. ~10¹⁰ electrons/s (~ GHz)

Fractional quantum Hall (FQH) effect

Fractional charge

Anyon statistics

Aharonov-Bohm phase $\gamma(C) = 2\pi/3eBS/h$

Introduction: Tunneling experiments

Fractional-quasiparticle Creation in a local FQH system

Hashisaka et al., Phys. Rev. Lett. 114, 056802 (2015).

Measurement of "Fractional charge"

Strong backscattering

e* = e

Saminadayar *et al.*, PRL1997. de-Picciotto *et al.*, Nature 1997.

Griffiths et al., PRL 85, 3918 (2000).

Evidence of Fractional quasiparticles

One-by-one partitioning

We use

"Cross-correlation" Shot-noise measurement

L. Samidanayar et al., PRL 79, 256 (1997).

Noise Measurement on a Mesoscopic Device

- Cross-correlation noise measurement
- Experimental technique

Creation of Fractional Quasiparticles

- Local fractional quantum Hall system
- ✓ Fractional-quasiparticle tunneling
- Tomonaga-Luttinger-liquid behavior

An "Ideal detector" for mesoscopic devices

Sensitivity << e
High speed (No loss of events)

(Impossible in today's technology)

- ✓ RF (GHz) measurement
- Noise measurement (MHz frequencies)

Ya. M. Blanter and M. Büttiker, Phys. Rep. **336**, 1 (2000).

1 nA Typ. ~10¹⁰ electrons/s (~ GHz)

Cross-correlation noise measurement

Auto correlation

Variance of a single current

 D^2

Cross correlation

 $I_{\rm A}$ $I_{\rm B}$

Correlation between two currents

Noise cross-correlation

Not only the **amplitude**, But also the **sign**.

Attractive: $I_A I_B > 0$

< 0

Repulsive: $I_{\rm A}$ $I_{\rm B}$

Quantum statistics

Boson / Fermion / Anyon

(Bunching / Anti-bunching)

Ya. M. Blanter and M. Büttiker, Phys. Rep. **336**, 1 (2000).

Repulsive interaction

Sign of cross-correlation

Current partitioning at a beam splitter ^{Henny et al., Science 284, 296 (1999).} Oliver et al., Science 284, 299 (1999).

One-by-one electron partitioning (Anti-bunching of electrons)

Negative correlation

Hashisaka et al., Rev. Sci. Instrum. 85, 054704 (2014).

Another interesting example:

Detection of Inelastic scattering in an edge channel

(in preparation)

Texier and Büttiker PRB 62, 7454 (2000).

Technical note

Homemade Transimpedance amplifier

Low input impedance Z_{in} ~ 100 Ω
 Low noise floor

Suppression of the

extrinsic crosstalk Device ΔI_{A} ΔI_{A} ΔI_{B} $\Box C_{p}$

1p

Sensitivity ~ 10^{-30} A²/Hz

Hashisaka *et al.*, Rev. Sci. Instrum. **85**, 054704 (2014).

Noise Measurement on a Mesoscopic Device

- Cross-correlation noise measurement
- Experimental technique

Creation of Fractional Quasiparticles

- Local fractional quantum Hall system
- Fractional-quasiparticle tunneling
- Tomonaga-Luttinger-liquid behavior

Quantum Hall junction

"Integer / Fractional / Integer" QH junction

Laughlin quasiparticle creation?

Griffiths et al., PRL 85, 3918 (2000).

Cross-correlation Shot-noise measurements

Bulk properties

Two-dimensional electron system in a GaAs / AlGaAs heterostructure

Electron density: $n_e = 2.3 \times 10^{11} \text{ cm}^{-2}$

Mobility: $\mu = 3.3 \times 10^6 \text{ cm}^2/\text{Vs}$ Electron temperature:

 $T_e \sim 80 \text{ mK}$

Local Fractional quantum Hall (LFQH) system

Tuning of **Local filling factor**

by gate voltages

 $v_{\text{local}} = 1/3$ FQH system in a $v_{\text{bulk}} = 1$ IQH system

Tunneling experiment

Quantum Point Contact (QPC)

Modulation of electron density Bulk: $v_B = 1$ QPC: $v_{QPC} \sim 1/3$

T: transmission probability of IQH edge channel *R*: reflection probability of IQH edge channel

Luttinger liquid behavior

Power law behavior of I-V characteristics (DC meas.)

S. Roddaro et al., PRL 95, 156804 (2005).

Experimental setup

DC measurement: Input current I_1 **Lock-in (V_{AC} = 40 uV) Backscattered current I_2 Shot noise: Cross correlation $\langle I_3 \ I_5 \rangle$

DC characteristics

Quantized differential conductance $(e^2/3h)$

Power law behavior

Shot noise of fractional quasiparticles

Shot noise:
$$S_{35}$$
 $\langle I_3 I_5 \rangle$
 $I_3 I_5 = 2e^*I \times T_1 (1)$
Negative correlation:

One-by-one tunneling

At a low magnetic field (4.0 T)

e* = e: scattering of electrons

At a high magnetic field (8.0 T) $e^* = e/3$: scattering of e/3 quasiparticles

Creation of fractional quasiparticles

 T_1 : Transmission prob. between v = 1 Integer QH edge channels

Fractional qps. appear from IQH systems!

Strong- and Weak-backscattering limit

Electron tunneling through the vacuum or the IQH regime.

Strong backscattering

Weak backscattering

Suppression of *e*/3-charge tunneling at low bias voltages

D. C. Glattli et al., Physica E 6, 22 (2000),
Y. Chung et al., PRL 67, 201104(R) (2003),
D. Ferraro et al., PRL 101, 166805 (2008).

Power law behavior in dc transport characteristics

Temperature dependence

Fractional quasiparticles at high temperatures

FQH gap $D_F @ v = 1/3$: > 2 K_{typ.} @ 3 T > 7 K_{typ.} @ 10 T Dethlefsen et al., PRB 2006.

Disorder potential (G) prevents the observation of FQH effects.

Device 2

400nm

Disorder length scale: 100 nm_{typ.}

(depends on the spacer width)

J. Martin et al., Science 305, 980 (2004).

Comparable to QPC's size

Creation of Fractional Quasiparticles in a local fractional quantum Hall system

- Cross-correlation noise measurement
 Hashisaka *et al.*, Rev. Sci. Instrum. **85**, 054704 (2014).
- Local fractional quantum Hall system
- Fractional-quasiparticle tunneling
- ✓ Tomonaga-Luttinger-liquid behavior

Hashisaka *et al.*, Phys. Rev. Lett. **114**, 056802 (2015). Hashisaka *et al.*, Phys. Rev. B **88**, 235409 (2013).