Mode Mixing in Graphene p-n Junctions Investigated by Shot Noise Measurement

N. Kumada^{1,2}, F. D. Parmentier², H. Hibino¹, D. C. Glattli², and P. Roulleau²

¹NTT Basic Research Laboratories ²Nanoelectronics Group, CEA Saclay

Outline

Introduction

- Graphene *p-n* junction (PNJ)
- Bipolar quantum Hall states
- Expected shot noise at a PNJ

Device structure

• Graphene bipolar device for shot noise measurements

Results and discussions

- Energy relaxation along PNJs
- Beam splitter properties of PNJs

Introduction: graphene *p*-*n* junction

Graphene Linear and gapless band structure

- massless Dirac Fermion
- symmetric electron and hole properties
- adjacent electron and hole regions

Unique system to investigate transport of Dirac Fermions across PNJs

Introduction: graphene *p-n* junction

Nature Phys. **5**, 222 (2009) Nat. Commun. **4**, 2342 (2013). Jpn. J. Appl. Phys. **52**, 110105 (2013).

Veselago lensing

Theory: Science 315, 1253 (2007).

Theory: Phys. Rev. B **81**, 241406 (2010).

Experiment: Phys. Rev. Lett. **107**,046602 (2011). Nat. Commun. 6, 6470 (2015)

Nat. Commun. 6, 6093 (2015).

Introduction: graphene bipolar QH state

Combination of QH physics and characteristic transport at PNJ leads to quantized conductance at unusual values.

Experiment: Science **317**, 638 (2007)

Theory: Science 317, 641 (2007)

Introduction: graphene bipolar QH state

Combination of QH physics and characteristic transport at PNJ leads to quantized conductance at unusual values.

Bipolar QH state

$$G = \frac{|v||v'|}{|v|+|v'|} \ge \frac{e^2}{h}$$

Experiment: Science 317, 638 (2007)

Theory: Science **317**, 641 (2007)

Introduction: shot noise at graphene *p-n* junction

shot noise

Shot noise depends on the energy distribution in the PNJ.

 $\frac{\text{quasi-elastic scattering}}{\text{double-step function:}}$ F = 0.25

<u>inelastic scattering in the PNJ</u> hot Fermi function: F = 0.28

inelastic scattering with external states

cold Fermi function: F = 0

Note: transport measurement gives $G = e^2/h$ for all the cases.

Introduction: shot noise at graphene *p-n* junction

In the case of elastic mode mixing, a PNJ can serve as a beam splitter.

Experiment: device structure

Device structure for noise measurement

- graphene on SiC
- *n* ~ 5 x 10¹¹ cm⁻²

 $L = 5, 10, 20, 50, 100 \,\mu\text{m}$

noise measurement at 3 MHz

- Shot noise is generated by the PNJ.
- *F* is much smaller than that expected for double-step function. Energy distribution changes in the 50- μ m-long PNJ.

 $f_{\rm PNJ}(E)$ $f_{\rm PNJ}(E)$ $f_{\rm PNJ}(E)$ eV_{sd} 0 Έ 0.30 Fano factor 0.20 0.10 0.00 20 40 60 80 0 100 Channel length (µm)

Shot noise decreases with increasing *L*.

Relaxation length $L_0 = 16 \ \mu m$

The behavior can be explained by the coupling to cold external states.

Energy loss is negligible when $L \ll L_0 = 16 \mu m$

Current in the bipolar QH state is constant within 2%.

Noise in the bipolar QH state fluctuates by 50%.

Origin of the noise fluctuations

Fluctuations of the energy relaxation through interactions with localized states.

Energy level and profile of localized states depend on B and V_{G} .

Summary

Noise measurement in graphene bipolar QH state

Noise is generated by a p-n junction.

Mode mixing at a p-n junction leads to non-equilibrium energy distribution.

Fano factor decreases with increasing PNJ length (relaxation length 16 μ m).

Energy distribution relaxes toward equilibrium Fermi distribution.

Beam splitter could be realized in graphene, encouraging electronic quantum optics experiments using graphene.