

New Perspectives in Spintronic and Mesoscopic Physics Symposium @Kashiwa 2015.06.12

Conversion from a charge current into a spin polarized current in the surface state of three-dimensional topological insulator

O<u>Yuichiro Ando¹</u>, Satoshi Sasaki², Kouji Segawa², Yoichi Ando², and Masashi Shiraishi¹

1. Department of Electronic Science and Engineering, Kyoto University

2. Institute of Scientific and Industrial Research, Osaka University

Y. Ando et al., Nano Lett. 14, 6226(2014).

Acknowledgments

Osaka Univ. Fabrication of TI

Prof. Yoichi Ando

Prof. Kouji Segawa

Kyoto Univ. Detection of spin current

Prof. Masashi Shiraishi

Dr. Satoshi Sasaki

Dr. Mario Novak

Dr. Fan Yang

Mr. Takahiro Hamasaki

Mr. Takayuki Kurokawa

Spin-momentum locking in 3D topological insulator

Surface state of topological insulator (TI)

2D metallic surface stateDirac electron system

Objective

Electrical injection/extraction of the spin polarized current due to charge flow in the surface state of the topological insulator

T. Sato et al., Phys. Rev. Lett. **105**, 136802 (2010).

T. Arakane et al., Nat. Comm. **3**, 636 (2012). Two dimensional transport properties

Shubnikov-de Haas oscillations

Weak-anti localization

A. A. Taskin et al., Phys. Rev. Lett. 109, 066803 (2012).

Detection of spin accumulation in topological insulator

5/25

Magnetoresistance using nonlocal three-terminal scheme

Change of current-voltage configuration

Change of current direction

7/25

- <u>Sample</u> : Single crystal Bi_{1.5}Sb_{0.5}Te_{1.7}Se_{1.3} (BSTS) & Bi₂Se₃ formed by a Bridgeman method
- Substrate : Thermally-oxidized SiO₂ (500 nm) / Si
- <u>TI flakes</u> : Mechanical exfoliation using a Scotch tape

Thickness of TI-flake : Laser microscope& Atomic force microscope.

<u>Ni₈₀Fe₂₀(Py) & Au/Cr electrode</u> : Electron beam lithography & Electron beam evaporation.

- <u>Sample</u> : Single crystal Bi_{1.5}Sb_{0.5}Te_{1.7}Se_{1.3} (BSTS) & Bi₂Se₃ formed by a Bridgeman method
- Substrate : Thermally-oxidized SiO₂ (500 nm) / Si
- <u>TI flakes</u> : Mechanical exfoliation using a Scotch tape

Thickness of TI-flake : Laser microscope& Atomic force microscope.

<u>Ni₈₀Fe₂₀(Py) & Au/Cr electrode</u> : Electron beam lithography

& Electron beam evaporation.

A. A. Taskin et al., Phys. Rev. Lett. **107**, 016801 (2011).

Temperature dependence of resistivity

BSTS Bulk conduction band $E_{\rm F}$

Bulk valance band

Temperature dependence of resistivity

Reversal of the current-voltage scheme

Magnetoresistance at B // I

No rectangular hysteresis signals

Z. Ren et al., Phys. Rev. B **84**, 165311(2011). H. Steinberg et al., Nano Lett. **10**, 5032(2010).

Estimation of charge current density in the surface state

14/25

Estimation of charge current density in the surface state

470.94

♠

Rectangular hysteresis signals : Disappeared AMR signals : Observed

Disappearance of the rectangular signals : 150~200 K

16/25

16/25

 $\frac{\rho_{BSTS} @4.2K}{\rho_{BSTS} @300K}$

Considerable surface conduction at 300 K.

PRL 105, 066802 (2010)

PHYSICAL REVIEW LETTERS

6 AUGUST 2010

Spin and Charge Transport on the Surface of a Topological Insulator

A. A. Burkov and D. G. Hawthorn

Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario N2L 3GI, Canada (Received 12 May 2010; published 6 August 2010)

Spin drift-diffusion equations with spin-

 $\frac{\partial N}{\partial t} = D\nabla^2 N + 2\Gamma(\hat{z} \times \nabla) \cdot S$

$$\frac{\partial S^{x}}{\partial t} = \frac{D}{2} \frac{\partial^{2} S^{x}}{\partial x^{2}} + \frac{3D}{2} \frac{\partial^{2} S^{x}}{\partial y^{2}} + D \frac{\partial^{2} S^{y}}{\partial x \partial y} - \frac{S^{x}}{\tau} + \Gamma(\hat{z} \times \nabla)_{x} N$$
$$\frac{\partial S^{y}}{\partial t} = \frac{D}{2} \frac{\partial^{2} S^{y}}{\partial y^{2}} + \frac{3D}{2} \frac{\partial^{2} S^{y}}{\partial x^{2}} + D \frac{\partial^{2} S^{x}}{\partial x \partial y} - \frac{S^{y}}{\tau} + \Gamma(\hat{z} \times \nabla)_{y} N$$

17/25

week ending

Assuming $dS^{x}/dy=0, dS^{y}/dy=0$

$$D\frac{d^2N}{dx^2} + 2\Gamma\frac{dS^y}{dx} = 0$$

$$\frac{3D}{2}\frac{d^2S^y}{dx^2} - \frac{S^y}{\tau} + \Gamma\frac{dN}{dx} = 0$$

Boundary conditions

$$J|_{x=\pm L/2} = \frac{I}{e} \qquad \qquad -\frac{3D}{2}\frac{dS^{y}}{dx}|_{x=-L/2} = \frac{I\eta}{e}$$
$$\frac{dS^{y}}{dx}|_{x=L/2} = 0$$

Spin density along x direction

$$S^{y}(x) = \frac{I\eta}{ev_{F}} \sqrt{\frac{2}{3}} \frac{\cosh[(2x-L)/\sqrt{3/2}l]}{\sinh(2L/\sqrt{3/2}l)} - \frac{I}{2ev_{F}}$$

19/25

Bias current dependence of the spin signal

19/25

Estimation of spin injection and extraction efficiencies

20/25

This study: $2V=4 \sim 40 \text{mV} \Rightarrow \eta = 0.05 \sim 0.5\%$

Charge current through the bottom surface

Charge current through the bottom surface

21/31

Effect of the interface resistance on the spin injection efficiency

(in TI)
$$\begin{split} \mu_{\uparrow} &= A\sigma_{+}^{-1}e^{\frac{z}{l}} + Bz + r_{i\uparrow}eJ_{\uparrow}, \\ \mu_{\downarrow} &= -A\sigma_{-}^{-1}e^{\frac{z}{l}} + Bz + r_{i\downarrow}eJ_{\downarrow}, \end{split}$$

22/25

(in Py)
$$\mu_{\uparrow}' = a\sigma_{\uparrow}^{-1}e^{-\frac{z}{l_F}} + bz + d$$
,
 $\mu_{\downarrow}' = -a\sigma_{\downarrow}^{-1}e^{-\frac{z}{l_F}} + bz + d$,

One dimensional spin drift-diffusion model

$$\begin{split} & \frac{d}{e} \\ & = \left[\frac{r_i (1 - (P + P_F)\beta + PP_F))}{1 - \beta^2} \\ & + \frac{\left\{ (\sigma_+^{-1} + \sigma_-^{-1})(P_F - P)l + \frac{4r_i (P_F - \beta)}{1 - \beta^2} \right\} \left\{ \left(\sigma_\uparrow^{-1} + \sigma_\downarrow^{-1} \right) (P_F - P)l_F + \frac{4r_i (\beta - P)}{1 - \beta^2} \right\} \right] \end{split}$$

Effect of the interface resistance on the spin injection efficiency

Effect of the interface resistance on the spin injection efficiency

 \Rightarrow The conductance mismatch problem is not crucial issue.

1 Unoptimized spin injection and extraction geometry

 \Rightarrow Spin angular momentum change??

2 Low quality Py/TI interface (e.g. Intermixing TI and FM)

- \Rightarrow Insertion of MgO or Al₂O₃ tunnel barrier
 - Improvement of device fabrication procedure e.g., Ferromagnetic materials, Low temperature deposition

Summary

We have demonstrated the electrical injection and extraction of the spin polarized current due to spin-momentum locking of bulk-insulating topological insulator $Bi_{1.5}Sb_{0.5}Te_{1.7}Se_{1.3}$

- Local magnetoresistance
 - Spin injection/extraction efficiency: 0.05~0.5% (BSTS>>Bi₂Se₃)
- ✓ Detectable temperature: 4.2~200 K

Spin Polarization in TI

$$P = \frac{j}{j_0} = \frac{j e \mu_0^2}{4\pi \hbar^2 v_F} = 16.7\%$$

$$\mu_{0} = 100 \ meV$$

$$j = \frac{1 \times 10^{-4} [A]}{2 \times 10^{-6} [m]} = 50 [Am^{-1}]$$

$$j_{0} = \frac{1.6 \times 10^{-19} [A] 0.1^{2} [eV]}{4\pi \times (6.58 \times 10^{-16})^{2} [eVs]} = 300 [Am^{-1}]$$

Spin accumulation measurements

Charge current through the bottom and side surface

A linear relationship between DV_2 vs I

R_2 -H curves of Bi₂Se₃ devices

No rectangular hysteresis signals

(a) Local magnetoresistance

(b) Nonlocal magnetoresistance

(c) Three terminal local (This study)

Temperature dependence of DR_2 (Device B)

Rectangular hysteresis signals disappeared at 150 K

A technical issue

- High charge current density (> 100 ~ 1000 mA)
- Large interface and channel resistances

 \Rightarrow The TI devices were easily broken.

Spurious effects expected in FM/TI devices

Magnetization & charge current

- ✓ Anisotropic Magnetoresistance (AMR)
- ✓ Planar Hall effect (PHE)
- ✓ Anomalous Hall effects (AHE)
- ✓ Lorenz MR
- Tunneling Anisotropic Magnetoresistance (TAMR)

Magnetization & Thermal gradient

- ✓ Anomalous Nernst effects (ANE)
- ✓ Spin Seebeck effect (SSE)

....etc

A strong TI dependence and temperature dependence of the rectangular signals cannot be explained as a result of the spurious effects.

Spurious effects expected in FM/TI devices

Spurious effects expected in FM/TI devices

✓ Lorenz MR

Disappearance of the rectangular signals at 300 K & Clear AMR signals at 300K \Rightarrow ??

 Tunneling Anisotropic Magnetoresistance (TAMR)

Origin

: An anisotropic density of states [C. Gould et al., PRL **93**, 117203(2004).]

Interference of Rashba and Dresselhaus spin-orbit interactions [L. Moser et al., PRL **99**, 056601(2007).]

Discrepancy between AMR signals and Rectangular signals ??

Possible origin of the low spin injection efficiency

Spin polarization of Py

- ✓ Py/metal interface 0.2~0.4
- ✓ Small temperature dependence

E. Villamor Phys. Rev. B 88, 184411 (2013).

Possible origin of the low spin injection efficiency

(in TI)
$$\mu_{\uparrow} = A\sigma_{+}^{-1}e^{\frac{z}{\overline{\iota}}} + Bz + r_{i\uparrow}eJ_{\uparrow},$$
$$\mu_{\downarrow} = -A\sigma_{-}^{-1}e^{\frac{z}{\overline{\iota}}} + Bz + r_{i\downarrow}eJ_{\downarrow},$$

(in Py)
$$\mu_{\uparrow}' = a\sigma_{\uparrow}^{-1}e^{-\frac{z}{l_F}} + bz + d,$$
$$\mu_{\downarrow}' = -a\sigma_{\downarrow}^{-1}e^{-\frac{z}{l_F}} + bz + d,$$

One dimensional spin drift-diffusion model

$$\frac{d}{e} = \left[\frac{r_i (1 - (P + P_F)\beta + PP_F))}{1 - \beta^2} + \frac{\left\{ (\sigma_+^{-1} + \sigma_-^{-1})(P_F - P)l + \frac{4r_i(P_F - \beta)}{1 - \beta^2} \right\} \left\{ (\sigma_\uparrow^{-1} + \sigma_\downarrow^{-1})(P_F - P)l_F + \frac{4r_i(\beta - P)}{1 - \beta^2} \right\}}{4 \left\{ (\sigma_\uparrow^{-1} + \sigma_\downarrow^{-1})l + (\sigma_\uparrow^{-1} + \sigma_\downarrow^{-1})l + \frac{4r_i}{1 - \beta^2} \right\}} \right]$$

BSTS Local Current : z-direction

BSTS Non local Current : z-direction

BSTS Local Current : x-direction real scale