New Perspectives in Spintronic and Mesoscopic Physics (NPSMP2015) Kashiwa, Jun. 12, 2015

Helical transport in helical crystals

Shuichi Murakami Department of Physics, Tokyo Tech. TIES, Tokyo Tech.

Inversion asymmetric systems i.e. Te (tellurium)

- Weyl semimetals
- Chiral transport in crystals with helical lattice structure

Hirayama, Okugawa, Ishibashi, SM, Miyake, PRL 114, 206401 (2015)

Collaborators:

- Tokyo Tech.
 - M. Hirayama, T. Yoda, T. Yokoyama, M. Noro
- AIST, Tsukuba, Japan
 - T. Miyake, S. Ishibashi

NI-TI phase transitions and Weyl semimetals

TI: topological insulator

NI: normal insulator

SM, New J. Phys. ('07). SM. Kuga, PRB ('08) SM, Physica E43, 748 ('11)

Z_2 topological number **v**

v=0: normal insulator (NI) v=1: topological insulator (TI)

Formulae are different between (A) & (B)

 \rightarrow How does the TI-NI phase transition occur in (A) & (B)?

Universal phase diagram in 3D

SM, New J. Phys. ('07). SM. Kuga, PRB ('08) SM, Physica E43, 748 ('11)

(δ : inversion symmetry breaking)

(m : external parameter)

Systems with inversion symmetry

Systems without inversion symmetry

<u>3D</u> Weyl nodes = monopole or antimonopole for Berry curvature

- Weyl nodes are either monopole or antimonopole
- Quantized monopole charge
 - C. Herring, Phys. Rev. 52, 365 (1937).
 - G. E. Volovik, The Universe in a Helium Droplet (2007).
 - S. Murakami, New J. Phys. 9, 356 (2007).

Weyl semimetal

 \rightarrow Bulk 3D Dirac cones without degeneracy

Either time-reversal or inversion symmetry must be broken

SM, NJP ('07).

• Surface Fermi arc – connecting between Weyl nodes

Phys. Rev. B (2014)

Search for Weyl semimetals without inversion symmetry

Start from an insulator

 \rightarrow suppose a gap closes by changing a parameter m

Classification by space groups & *k*-points.

230 space groups

	<mark>1</mark> 2	3	4	5	6	7	8	9	10	11	12	13	14	15	10	1/	18	19	20
2	1 22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
4	1 42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
6	1 62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	<mark>80</mark>
8	1 82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99	100
10	1 102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120
12	1 122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140
14	1 142	143	144	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159	<u>160</u>
16	<mark>1</mark> 162	163	164	165	166	167	168	169	170	171	172	173	174	175	176	177	178	179	<mark>180</mark>
18	1 182	183	184	185	186	187	188	189	190	191	192	193	194	195	196	197	198	<u>199</u>	200
20	1 202	203	204	205	206	207	208	209	210	211	212	213	214	215	216	217	218	219	220
22	1 222	223	224	225	226	227	228	229	230										

No inversion sym.

 $156 P3m1 C_{3v}^1$

(F1; K6; K7; M5; Z1.)

 $\begin{array}{lll} \Gamma & {\rm G}_{12}^4: \{C_3^+\mid 000\}, \{\sigma_{v_1}\mid 000\}; \ 3, 3; \ 4, 3; \ 6, 2: \ a. \\ M & {\rm G}_{12}^4\otimes {\rm T}_2; \ \{\sigma_{v_1}\mid 000\}, \{\tau_{v_2}\mid 2, 3; \ 4, 3: \ b. \\ A & {\rm G}_{12}^4\otimes {\rm T}_2; \ \{C_3^+\mid 000\}, \{\sigma_{v_1}\mid 000\}; \ t_3; \ 3, 3; \ 4, 3; \ 6, 2: \ a. \\ L & {\rm G}_{4}^4\otimes {\rm T}_2; \ \{\sigma_{v_1}\mid 000\}, \{\tau_{v_2}\mid 000\}; \ t_3; \ 2, 3; \ 4, 3; \ b. \\ K & {\rm G}_{10}^6\otimes {\rm T}_3; \ \{C_3^+\mid 000\}; \ t_1 \ {\rm or} \ t_2; \ 2, 2; \ 4, 2; \ 6, 2: \ a. \\ H & {\rm G}_{10}^6\otimes {\rm T}_3 \otimes {\rm T}_2; \ \{C_3^+\mid 000\}; \ t_1 \ {\rm or} \ t_2; \ t_3; \ 2, 2; \ 4, 2; \ 6, 2: \ a. \\ \end{array}$

- high-symmetry points (TRIM)

high-symmetry points (non TRIM)

high-symmetry lines

"The Mathematical Theory of Symmetry in Solids", Bradley, Cracknell Each k point \rightarrow k group

(Example): C_2 symmetry (i.e. k = invariant under C_2)

 C_2 eigenvalue = +1 or -1

(i) Same signs of C_2 gap cannot close at k – level repulsion

Κ

 (ii) <u>Different signs of C₂</u> gap closing

 → Weyl semimetal monopole-antimonopole pair creation

 \rightarrow move along a symmetry line

Systems without inversion symmetry

 \rightarrow Classification of parametric gap-closing

(a) Metal (gap closes along a loop) – mirror symmetric

7

Only two possibilities. No insulator-to-insulator transition happens.

Topological Effects in Tellurium and Selenium

Hirayama, Okugawa, Ishibashi, Murakami, Miyake, PRL 114, 206401 (2015)

Group-VI elements : Te and Se

Trigonal: $P3_121$ or $P3_221$

Introduction

(ex. :α-quartz)

the strong SOI with the broken space inversion symmetry

allows appearance of Weyl nodes

Band gap : Te 0.323, Se 2.0 (eV)

V. B. Anzin *et al.*, Phys. Stat. Sol. (a) **42**, 385 (1977).

S. Tutihasi et al., Phys. Rev. 158, 623 (1967).

Structure of Te and Se

 <u>helical chains</u> either right-handed or left-handed

Electronic band structures of Te and Se

V. B. Anzin *et al.*, Phys. Stat. Sol. (a) **42**, 385 (1977).
S. Tutihasi *et al.*, Phys. Rev. **158**, 623 (1967).

Electronic band structure under pressure Hirayama, et al., PRL 114, 206401 (2015)

Low \rightarrow Increase pressure \rightarrow High

Te becomes the Weyl semimetal under pressure.

It is a first proposal of Weyl semimetals for real materials with broken inversion symmetry.

Motion of Weyl Nodes: topological nature

Fermi Surface and Spin Texture of Te

c.f. Rashba system

The Fermi surface around the H point has a hedgehog spin structure.

Hirayama, et al., PRL 114, 206401 (2015) Chiral transport in crystals with helical structure current-induced orbital magnetization

Electric current flowing through a helical crystal generates a magnetization.

Current-induced orbital magnetization

<u>Model</u>

An infinite stack of honeycomb lattice layers with a helical structure

$$H = t_1 \sum_{\langle ij \rangle} c_i^{\dagger} c_j + t_2 \sum_i \xi_i c_i^{\dagger} c_j$$

 t_1 : nearest neighbor hopping

 t_2 :helical hopping between the same sublattice in the neighboring layers

Formalism for current induced orbital magnetization

Orbital magnetization (Ceresoli et al, Xiao et al. (2006))

$$\boldsymbol{M}_{\text{orb}} = \frac{e}{2\hbar} \operatorname{Im} \sum_{n} \int_{BZ} \frac{d^3 \boldsymbol{k}}{(2\pi)^3} f_{n\boldsymbol{k}} \langle \partial_{\boldsymbol{k}} u_{n\boldsymbol{k}} | \times (H_{\boldsymbol{k}} + \varepsilon_{n\boldsymbol{k}} - 2\varepsilon_F) | \partial_{\boldsymbol{k}} u_{n\boldsymbol{k}} \rangle$$

df

Apply electric field (// helical axis)

Boltzmann approximation

distribution function :
$$f_{nk} = f_{nk}^0 + eE_z \tau v_{n,z} \frac{df}{d\varepsilon}\Big|_{\varepsilon = \varepsilon_{nk}}$$

For a metal, the orbital magnetization is induced by an electric current.

parameters : $t_2 = t_1/3$

• The directions of the magnetization is opposite for the right-handed and left-handed helix. Quantum mechanical analog of solenoid!

• The orbital magnetization is enhanced around the Dirac points.

Current-induced spin magnetization

spin-orbit interaction

 λ :spin-dependent nearest neighbor hopping

 λ_{xy} , λ_z :spin-dependent helical hopping between the sublattice in the neighboring layers

Spin texture

Band structure: $t_1 = 1, \lambda = -0.06, \lambda_{xy} = 0.05, \lambda_z = 0.05$

A radial spin texture around the H point (similar to Te)

Different from Rashba systems

Current-induced spin magnetization

We apply an electric field along the helical axis.

$$M_{\text{spin},z} = -\frac{eE\tau\mu_B}{\hbar} \sum_n \int_{\text{BZ}} \frac{d^3k}{(2\pi)^3} \frac{df}{d\epsilon} \Big|_{\epsilon=\epsilon_{nk}} \left\langle u_{nk} \left| \frac{\partial H_k}{\partial k_z} \right| u_{nk} \right\rangle \langle u_{nk} | s_z | u_{nk} \rangle$$

z-component of spin magnetization
$$t_1 = 1, \lambda_{xy} = 0.05, \lambda_z = 0.05, \Delta = 0.4$$

$$\int_{\substack{0.06 \\ 0.04 \\ 0.02 \\ 0.02 \\ 0.04 \\ -0.06 \\ -0.02 \\ -0.04 \\ -0.06 \\ -0.06 \\ -0.02 \\ -0.04 \\ -0.06 \\$$

Chiral transport in CNTs

Chiral nanotube breaks inversion & mirror symmetries \rightarrow chiral transport is allowed

Calculation of Chiral transport

<conductivity>:

Boltzmann transport,

constant relaxation time

Chiral conductivity for nanotubes with various chiralities

For fixed (small) carrier concentration..

- n-m=3N : σ₁₂=0
- n-m=3N+2: σ₁₂>0
- n-m=3N+1: σ₁₂<0

It can be understood from the warped Fermi surface

Chiral conductivity for (8,6) nanotube

Kinks as a function of carrier concentration

 \rightarrow Due to subband structures

Decompose into subband contributions:

Conclusions

- Weyl semimetals (in inversion asymmetric systems)
 - In topological insulator (TI) normal insulator (NI) phase transition, Weyl semimetals naturally appear
 - Combine with space group symmetry
 → powerful way for searching topological phases
 e.g. Tellurium: Weyl semimetal at high pressure
- Chiral transport in crystals with helical lattice structure
 - analogy with solenoid
 - Current induced orbital & spin magnetization
 - Example:
 - 3D chiral crystals: Tellurium etc.
 - chiral CNT

