Imaging the wave functions of Dirac– Landau levels in the topological surface state

> ~ Spectroscopic-imaging STM on Bi₂Se₃ under a magnetic field ~

RIKEN Center for Emergent Matter Science, Japan Tetsuo Hanaguri

Collaborators

RIKEN CEMS, Japan

Y.-S. Fu M. Kawamura

Huazhong Univ. Sci. & Tech., China

Y.-S. Fu, M. Kawamura et al., Nature Phys., 10, 815 (2014).

Topological insulators

X. -L. Qi and S. -C. Zhang, RMP **83**, 1057 (2011). M. Z. Hasan and C. L. Kane, RMP **82**, 3045 (2010).

Helical Dirac fermions at the surfaces characterize 3D topological insulators.

Dirac Landau levels of topological surface state

How to image the Landau wave function?

We must localize the Landau orbit in real space...

Introduction of potentia

Localized/extended states

K. Nomura, http://www-lab.imr.tohoku.ac.jp /~nomura/note_nomura.pdf

$$\Psi_{0,j_z}(p_n,\varrho) = \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2\pi}\ell_B} \left(\sqrt{\frac{n}{\ell_N}} \right) + \frac{n}{|l_z|} \right) = \frac{1}{2} \exp \left(-\frac{1}{4} \left(\frac{r}{\ell_B} \right)^2 \theta + i t_z \theta \right) = \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} \left(\frac{r}{\ell_B} \right) \right) = \frac{1}{2} \left(\frac{r}{\ell_B} \right) = \frac{1}{\sqrt{2}} \left(\frac{r}{\ell_B} \right) = \frac$$

How does Dirac-Landau orbit look like?

RIKEN multi-extreme STM (based on UNISOKU USM-1300)

T. Hanaguri, J. Phys.: Conf. Ser. 51,514 (2006). More info. available in my web page.

- UHV (~10⁻¹⁰ Torr), Very-low temp. (400 mK), High field (12 T)
- In-situ tip cleaning/sharpening by field-ion microscope.
- In-situ tip/sample exchange (resonant freq. 5.5 kHz)
- Long-term stability at base temp < Å/day
- Noise levels (1 kHz BW) < 0.5 pm, 1 pA

Imaging potential landscape in Bi₂Se₃

Formap E(portential map) 120 nm × 83 nm

Imaging Landau orbits

Equalizer (procentical antap) T 120 nm × 83 nm

Linecut ~ energy dependence

- LLs in a potential form Landau sub-bands.
- LL_0 and LL_1 split into sublevels.
- LL_1 splits even at the bottom of the potential.
- Apparent two branches for higher LLs.

Linecut ~ position dependence

Model calculation

Dirac Hamiltonian with a potential

 $H = H_0 + V(r)\,\sigma_0$

$$H_0 = v \begin{pmatrix} 0 & \pi_y + i\pi_x \\ \pi_y - i\pi_x & 0 \end{pmatrix} \qquad \vec{\pi} = \vec{p} - e\vec{A}$$

 $V(r) = \frac{V_0 d}{\sqrt{r^2 + d^2}}$ Charged defect beneath the surface (circular symmetric)

M. Kawamura

Good quantum number : z component of total angular momentum $j_z = l_z - \frac{1}{2}$

> Eigen energies : E_{n,j_z} LDOS : $LDOS(E,r) = \sum_{n,j_z} \frac{\Gamma}{\left(E - E_{n,j_z}\right)^2 + \Gamma^2} |\Psi_{n,j_z}(r)|^2$ obtained by diagonalizing the block Hamiltonians

Model calculation captures observations

Two components kill the nodes in DOS

Non-trivial spin-magnetization texture

Summary

- Dirac Landau levels under potential variation have been studied in a topological insulator Bi_2Se_3 by STM/STS.
- Signatures of two-component wave function manifest themselves in the splitting of n = 1 Landau level at the potential minimum and the absence of nodal structure in the density-of-state distribution.
- Model calculation suggests that spin-orbit coupled nature brings about energy-dependent spin texture in a potential, which may be detected by spin-polarized STM and will provide a novel way to manipulate spins.
 - Zeeman effect
 - Spin-polarized STM
 - Quantum anomalous Hall state

For details, see Y. -S. Fu, M. Kawamura *et al.*, Nature Phys., **10**, 815 (2014).