Chiral electroluminescence from 2D material based transistors

Y. Iwasa

University of Tokyo & RIKEN CEMS

Acknowledgements

Materials/Devices

<u>Y. J. Zhang (Tokyo)</u> <u>R. Suzuki (Tokyo)</u> <u>M. Onga (Tokyo)</u> J. T. Ye, (Groningen) Y. Kasahara (Kyoto)

SARPES

M. Sakano, K. Ishizaka (Tokyo) S. Shin, K. Yaji(ISSP) K. Miyamoto, T. Okuda (HIroshima<u>)</u>

Theory T. Oka (Tokyo)

Transition Metal Dichalcogenides (TMD, MX₂)

MoS₂ known as lubricant

mono/multilayer

Monolayer Isolation (2005) Photoluminescence (2010) Monolayer FET(2011) Valleytronics (2012) Superconductivity (2012) Photodetectors (2013) Light Emitting Diodes (2014) Piezoelectic (2014) Laser (2015) Thermolelectrics

History of MoS₂ researches

I. Song et al., RSC Adv. 5, 7495 (2015)

Broking Inversion Symmetry in Graphene

http://www2.fkf.mpg.de/klitzing/home

Xiao, Yao, Niu, PRL 99, 236809 (2007).

 $k_x (\pi/a)$

Valley curvature in monolayer TMDs

T. Cao, *et al.*, Nature Communication, **3**, 887 (2012).

Broken Inversion Symmetry + SOI in TMD

http://www2.fkf.mpg.de/klitzing/home.php

D. Xiao et al., PRL 108, 196802 (2012).

Monolayer and Bulk MoS₂

Layer number dependence of PL Circular Polarization

R. Suzuki et al., Nat Nanotech 9, 611 (2014)

Spin–Polarized Valence band in 3R–MoS₂

Valley-dependent spin polarization observed by SARPES

D. Xiao et al., PRL 108, 196802 (2012)

R. Suzuki et al., Nat Nanotech 9, 611 (2014)

Opto-valleytronics in monolayer TMDs

Circular dichroic PL

H. Zeng et al., *Nat Nano* 7, 490 (2012).K. F. Mak et al., *Nat Nano* 7, 494 (2012).

EO conversion

Current→ Circularly polarized light (Chiral Light Emitting Transistor)

Y. J. Zhang et al., Science 344, 725 (2014)

OE conversion

Circularly polarized light →Valley-polarized current (Valley Hall Effect)

K. F. Mak et al. Science 344, 1489 (2014)

Monolayer FET of MoS₂

WSe2: V. Podzorov, APL 84, 3301 (2004)

From FET to EDLT (Electric Double Layer Transistor)

Transistor Characteristics of MoX2 EDLTs

۱

* Systematic Evolution of Ambipolar Transistor Operation in MoX_2

Gate induced superconductivity in MoS_2

Ambipolar transport and Stable *p-i-n* Junction in MoS₂-EDLT

Y. J. Zhang et al., *Nano Lett.* **12** 1136 (2012)Y. J. Zhang et al., *Nano Lett.* **13** 3023 (2013)

Circularly polarized EL in monolayer WSe₂-EDLT

Y. J. Zhang et al., Science **344**, 725 (2014)

Polarization switching by current direction in WSe_2

Zhang et al., Science 344, 725 (2014)

Switchable chiral light source

Spin LED

Nature 402, 787/790 (1999)

Chemically doped *p-n* junction

Spin circular dichroism

Circular emission requires spin injection

Helicity is controlled by magnetic field

Valley LET

Field-induced *p-n* junction

Valley circular dichroism

Valley injection is not necessary

Helicity can be controlled by electric field

Potential Mechanisms

Model 1; Polarization is produced at I-region Y. J. Zhang *et al.*, *Science* 344, 725 (2014)

Model 2: Polarization is produced at P-region H. Yu et al., *PRL* 113, 156603 (2014)

Source of circularly polarized EL is non-parabolicity (trigonal warping) of valence bands

Mechanism 1: Produced at *PIN* Junction

Valley dependent overlap of electron and hole distributions

Phys. Rev. B 88, 045416 (2013).

Y. J. Zhang, T. Oka et al., Science 344, 725 (2014)

Mechanism 2: Produced at P channels

Nonlinear current produces valley polarization

H. Yu et al., Phys. Rev. Lett. 113, 156603 (2014)

Summary

TMD for valleytronics: interface valley and spin/light

- 1. Experimental detection of valley-dependent spin polarization
- 2. Switchable chiral light emitting transistor

