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The explicit identification of the QCPs in these and related
HF metals has in turn helped to establish a number of properties
that are broadly important for the physics of strongly correlated
electron systems. One of the modern themes, central to a variety
of strongly correlated electron systems, is how the standard
theory of metals, Landau’s Fermi-liquid (FL) theory, can break
down (see below, first section). Quantum criticality, through its
emergent excitations, serves as a mechanism for NFL behaviour,
as demonstrated by a T-linear electrical resistivity (Fig. 1b,c).
Moreover, the NFL behaviour covers a surprisingly large part of the
phase diagram. For instance, in Ge-doped YbRh2Si2, the T-linear
electrical resistivity extends over three decades of temperature
(Fig. 1c), a range that contains a large entropy (see below). Finally,
quantum criticality can lead to novel quantum phases such as
unconventional superconductivity (Fig. 1d).

These experiments have mostly taken place over the past
decade, and they have been accompanied by extensive theoretical
studies. The latter have led to two classes of quantum criticality
for HF metals. One type extends the standard theory of second-
order phase transitions to the quantum case9–11, whereas the other
type invokes new critical excitations that are inherently quantum
mechanical12–14. The purpose of this article is to provide a status
report on this rapidly developing subject.

MAGNETIC HF METALS AND FL BEHAVIOUR

HF phenomena were first observed in the low-temperature
thermodynamic and transport properties of CeAl3 in 1975 (ref. 15).
The 1979 discovery of superconductivity in CeCu2Si2 (ref. 16)
made HF physics a subject of extensive studies. This discovery was
initially received by the community with strong scepticism, which,
however, was gradually overcome with the aid of two observations,
of (1) bulk superconductivity in high-quality CeCu2Si2 single
crystals17 and (2) HF superconductivity in several U-based
intermetallics: UBe13 (ref. 18), UPt3 (ref. 19) and URu2Si2 (ref. 20;
W. Schlabitz, et al., unpublished). Around the same time, it was
recognized that CeCu2Si2, CeAl3 and other Ce-based compounds
behaved as ‘Kondo-lattice’ systems21.

KONDO EFFECT

Consider a localized magnetic moment of spin h̄/2 immersed
in a band of conduction electrons. The Kondo interaction—an
exchange coupling between the local moment and the spins of
the conduction electrons—is AF. It is energetically favourable for
the two types of spin to form an up–down arrangement: when
the local moment is in its up state, |"i, a linear superposition
of the conduction-electron orbitals will be in its down state,
|#ic, and vice versa. The correct ground state is not either of
the product states, but an entangled state—the Kondo singlet,
(1/2)(|"i|#ic � |#i|"ic). One of the remarkable features is
that there is a Kondo resonance in the low-lying many-body
excitation spectrum. The singlet formation in the ground state
turns a composite object, formed out of the local moment
and a conduction electron, into an elementary excitation with
internal quantum numbers that are identical to those of a bare
electron—spin h̄/2 and charge e. Loosely speaking, because of the
entanglement of the local moment with the spin degree of freedom
of a conduction electron, the local moment has acquired all the
quantum numbers of the latter and is transformed into a composite
fermion. We will use the term Kondo eVect to describe the
phenomenon of Kondo-resonance formation at low temperatures.

At high temperatures, on the other hand, the system wants
to maximize the entropy by sampling all of the possible
configurations. It gains free energy by making the local moment
essentially free, which in turn weakly scatters the conduction
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Figure 1 Quantum critical points in HF metals. a, AF ordering temperature TN versus
Au concentration x for CeCu6�xAux (ref. 7), showing a doping-induced QCP.
b, Suppression of the magnetic ordering in YbRh2Si2 by a magnetic field. Also shown
is the evolution of the exponent ↵ in 1⇢ ⌘ [⇢ (T )�⇢0] / T ↵ , within the
temperature–field phase diagram of YbRh2Si2 (ref. 55). Blue and orange regions
mark ↵ = 2 and 1, respectively. c, Linear temperature dependence of the electrical
resistivity for Ge-doped YbRh2Si2 over three decades of temperature (ref. 55),
demonstrating the robustness of the non-Fermi-liquid (NFL) behaviour in the
quantum-critical regime. d, Temperature-versus-pressure phase diagram for
CePd2Si2, illustrating the emergence of a superconducting phase centred around the
QCP. The Néel (TN) and superconducting (Tc) ordering temperatures are indicated by
filled and open symbols, respectively79.

electrons; this is the regime of asymptotic freedom, a notion
that also plays a vital role in quantum chromodynamics. It is
in this regime that Kondo discovered logarithmically divergent
correction terms in the scattering amplitude beyond the Born
approximation22. Kondo’s work opened a floodgate to a large body
of theoretical work23, which, among other things, led to a complete
understanding of the crossover between the high-temperature
weak-scattering regime and the low-temperature Kondo-singlet
state. This crossover occurs over a broad temperature range, and is
specified by a Kondo temperature; the latter depends on the Kondo
interaction and the density of states of the conduction electrons
at the Fermi energy. We will use Kondo screening to refer to the
process of developing the Kondo singlet correlations as temperature
is lowered.

KONDO LATTICE AND HEAVY FERMI LIQUID

HF metals contain a lattice of strongly correlated f electrons and
some bands of conduction electrons. The f electrons are associated
with the rare-earth or actinide ions and are, by themselves, in a
Mott-insulating state: the on-site Coulomb repulsion is so much
stronger than the kinetic energy that these f electrons behave as
localized magnetic moments, typically at room temperature and
below. They are coupled to the conduction electrons via an (AF)
Kondo interaction. In theoretical model studies, only one band of
conduction electrons is typically considered. Such a coupled system
is called a Kondo lattice.

It is useful to compare the HF metals with other strongly
correlated electron systems. The Mott-insulating nature of the f
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allowing the possibility of observing and studying the 2CK effect. The
2CK hamiltonian (equation (2)) has three possible ground states,
depending on the relative couplings to the two reservoirs: 1CK with
the finite reservoir (Jfr . Jir), 1CK with the infinite reservoir (Jir . Jfr),
and 2CK at the quantum critical point (Jfr 5 Jir).

In Fig. 2, we demonstrate that the small quantum dot can act as a
tunable magnetic impurity and display the 1CK effect. If the small
quantum dot has an odd number of electrons, it has a net spin and
acts as a magnetic impurity. With gate ‘n’ de-energized (0 V), the
system has three conventional leads (blue and red in Fig. 1d), all of
which cooperate to screen the magnetic impurity with a single energy
scale kTK. At temperature T=TK, the Kondo effect enhances scatter-
ing and hence conductance from one lead to another. We measure
the conductance g:dI=dVdsjVds~0 between the two blue leads (I is
current, and Vds is voltage between source and drain reservoirs). As
temperature is increased, the Kondo state is partially destroyed, so
the conductance decreases (Fig. 2b). The conductance as a function
of temperature (for example, Figure 2b inset) matches the expected
form g(T) for a quantum dot in the Kondo regime19,20; see
Supplementary Information for complete analysis. This, and all other
measurements reported here, are performed in a magnetic field
B 5 130 mT normal to the plane of the heterostructure. The orbital

effect of this modest field suppresses direct transmission through the
small quantum dot, which we found to yield Fano lineshapes at zero
magnetic field (compare ref. 21). Owing to the small g-factor of
electrons in GaAs/AlGaAs heterostructures, jgj< 0.4, the Zeeman
effect of the field is unimportant in both 1CK and 2CK regimes
(see Supplementary Information for details). All results presented
in this Letter are for this same electron occupancy, although we have
observed similar behaviour in the next Kondo valley (two fewer
electrons in the small dot), as well as on thermally cycling the device.

Figure 3 explores the effect of energizing gate ‘n’, thus forming
the finite reservoir. Differential conductance g(T, Vds) 5 dI/dVds is
enhanced near zero bias (Fig. 3b and f) when the electrostatic poten-
tial of the small dot is set to the middle of the Kondo valleys in Fig. 2b
or c, respectively. This is a manifestation of the enhanced density of
states at the Fermi level, widely accepted as one of the classic signa-
tures of the Kondo effect, demonstrating clearly that the small dot
acts as a magnetic impurity. Remarkably, the zero-bias enhancement
changes to zero-bias suppression as gate n is made more negative,
closing off the big dot to form a finite reservoir with integer occu-
pancy (Fig. 3g). The change signals that the single-channel Kondo
state with the leads has been broken, to form instead solely with the
finite reservoir. This occurs for Jfr . Jir, as shown in more detail in
Fig. 3h and Supplementary Information. With slightly weaker coup-
ling to the finite reservoir (Fig. 3c), Jir . Jfr, the Kondo state is formed
solely with the infinite reservoir. This effect requires the finite res-
ervoir to have integer occupancy, that is, the device must be set to a
Coulomb blockade valley of the finite reservoir.

In Fig. 3d and h, we provide further evidence that, with the finite
reservoir formed, two independent 1CK states can exist, depending
on the relative coupling of the small dot to the two reservoirs. We
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Figure 1 | One and two-channel Kondo effects. a, Single channel Kondo
(1CK) effect. The Anderson model describes a magnetic impurity in a metal
as a single spin-degenerate state (right side of green barrier) coupled to a
Fermi reservoir of electrons (left) with Fermi energy eF. Coulomb interaction
U between localized electrons favours having only a single electron in the
localized state. The antiferromagnetic coupling J between the localized spin
and the reservoir depends on the tunnelling rate C, the depth of the level e0,
and U, according to J / CU/[e0(e0 1 U)] (ref. 30). At low temperature, high-
order tunnelling processes between the local state and the Fermi reservoirs
coherently add together to screen the localized electron spin. b, Two channel
Kondo (2CK) effect. A localized electron is now coupled to two independent
Fermi reservoirs (blue and red). If the two independent reservoirs are equally
coupled to the localized spin, each will individually attempt to screen the
spin, resulting in the formation of a highly correlated electron state.
c, Physically separating two reservoirs does not suffice to make them
independent. If a localized electron can hop off the site to the right reservoir
and a new electron can hop onto the site from the left, the two reservoirs will
cooperate in screening the localized spin. To create two independent
screening channels, processes that transfer electrons from one reservoir to
another must be suppressed. d, Experimental realization of the 2CK effect.
We add an additional finite reservoir (red) to an artificial magnetic impurity
connected to an infinite reservoir composed of two conventional leads
(blue). e, Coulomb blockade suppresses exchange of electrons between the
finite reservoir and the normal leads at low temperature. The two reservoirs
(blue and red) hence act as two independent screening channels (see main
text).
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Figure 2 | Artificial magnetic impurity. a, Scanning electron micrograph of
a device similar to that measured. The device consists of a small quantum dot
(magnetic impurity, left) coupled to conventional leads (top and bottom
left) and to a large quantum dot (finite reservoir, right). Electrons are
depleted under every gate by application of negative voltages. In the
experiments described here, voltages are varied on gates labelled c
(‘coupling’ between dots), bp (‘big dot plunger’), sp (‘small dot plunger’)
and n (‘nose’, which opens or closes the big dot). All transport measurements
presented in Figs 3 and 4 are measured with source and drain connected as
shown, in a magnetic field of 130 mT normal to the plane of the 2DEG.
b, With gate voltage n 5 0, the large dot opens into an infinite reservoir.
Arrows mark regions where the small dot has an unpaired spin, leading to
enhanced conductance at 12 mK (black) compared to 50 mK (red). Fitting
the temperature dependence of the conductance (b inset), we find that the
Kondo temperature ranges from 110 to 300 mK (see Supplementary
Information). In c, the data from b are shown for stronger tunnel coupling to
the right lead: c 5 2244 mV instead of 2282 mV. From the temperature
dependence of c, we find that TK ranges from 180 to 320 mK.
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allowing the possibility of observing and studying the 2CK effect. The
2CK hamiltonian (equation (2)) has three possible ground states,
depending on the relative couplings to the two reservoirs: 1CK with
the finite reservoir (Jfr . Jir), 1CK with the infinite reservoir (Jir . Jfr),
and 2CK at the quantum critical point (Jfr 5 Jir).

In Fig. 2, we demonstrate that the small quantum dot can act as a
tunable magnetic impurity and display the 1CK effect. If the small
quantum dot has an odd number of electrons, it has a net spin and
acts as a magnetic impurity. With gate ‘n’ de-energized (0 V), the
system has three conventional leads (blue and red in Fig. 1d), all of
which cooperate to screen the magnetic impurity with a single energy
scale kTK. At temperature T=TK, the Kondo effect enhances scatter-
ing and hence conductance from one lead to another. We measure
the conductance g:dI=dVdsjVds~0 between the two blue leads (I is
current, and Vds is voltage between source and drain reservoirs). As
temperature is increased, the Kondo state is partially destroyed, so
the conductance decreases (Fig. 2b). The conductance as a function
of temperature (for example, Figure 2b inset) matches the expected
form g(T) for a quantum dot in the Kondo regime19,20; see
Supplementary Information for complete analysis. This, and all other
measurements reported here, are performed in a magnetic field
B 5 130 mT normal to the plane of the heterostructure. The orbital

effect of this modest field suppresses direct transmission through the
small quantum dot, which we found to yield Fano lineshapes at zero
magnetic field (compare ref. 21). Owing to the small g-factor of
electrons in GaAs/AlGaAs heterostructures, jgj< 0.4, the Zeeman
effect of the field is unimportant in both 1CK and 2CK regimes
(see Supplementary Information for details). All results presented
in this Letter are for this same electron occupancy, although we have
observed similar behaviour in the next Kondo valley (two fewer
electrons in the small dot), as well as on thermally cycling the device.

Figure 3 explores the effect of energizing gate ‘n’, thus forming
the finite reservoir. Differential conductance g(T, Vds) 5 dI/dVds is
enhanced near zero bias (Fig. 3b and f) when the electrostatic poten-
tial of the small dot is set to the middle of the Kondo valleys in Fig. 2b
or c, respectively. This is a manifestation of the enhanced density of
states at the Fermi level, widely accepted as one of the classic signa-
tures of the Kondo effect, demonstrating clearly that the small dot
acts as a magnetic impurity. Remarkably, the zero-bias enhancement
changes to zero-bias suppression as gate n is made more negative,
closing off the big dot to form a finite reservoir with integer occu-
pancy (Fig. 3g). The change signals that the single-channel Kondo
state with the leads has been broken, to form instead solely with the
finite reservoir. This occurs for Jfr . Jir, as shown in more detail in
Fig. 3h and Supplementary Information. With slightly weaker coup-
ling to the finite reservoir (Fig. 3c), Jir . Jfr, the Kondo state is formed
solely with the infinite reservoir. This effect requires the finite res-
ervoir to have integer occupancy, that is, the device must be set to a
Coulomb blockade valley of the finite reservoir.

In Fig. 3d and h, we provide further evidence that, with the finite
reservoir formed, two independent 1CK states can exist, depending
on the relative coupling of the small dot to the two reservoirs. We

ε0

Γ

a b c

U

Ecir

frΓ

Γ

εF

1 µm

d e

Figure 1 | One and two-channel Kondo effects. a, Single channel Kondo
(1CK) effect. The Anderson model describes a magnetic impurity in a metal
as a single spin-degenerate state (right side of green barrier) coupled to a
Fermi reservoir of electrons (left) with Fermi energy eF. Coulomb interaction
U between localized electrons favours having only a single electron in the
localized state. The antiferromagnetic coupling J between the localized spin
and the reservoir depends on the tunnelling rate C, the depth of the level e0,
and U, according to J / CU/[e0(e0 1 U)] (ref. 30). At low temperature, high-
order tunnelling processes between the local state and the Fermi reservoirs
coherently add together to screen the localized electron spin. b, Two channel
Kondo (2CK) effect. A localized electron is now coupled to two independent
Fermi reservoirs (blue and red). If the two independent reservoirs are equally
coupled to the localized spin, each will individually attempt to screen the
spin, resulting in the formation of a highly correlated electron state.
c, Physically separating two reservoirs does not suffice to make them
independent. If a localized electron can hop off the site to the right reservoir
and a new electron can hop onto the site from the left, the two reservoirs will
cooperate in screening the localized spin. To create two independent
screening channels, processes that transfer electrons from one reservoir to
another must be suppressed. d, Experimental realization of the 2CK effect.
We add an additional finite reservoir (red) to an artificial magnetic impurity
connected to an infinite reservoir composed of two conventional leads
(blue). e, Coulomb blockade suppresses exchange of electrons between the
finite reservoir and the normal leads at low temperature. The two reservoirs
(blue and red) hence act as two independent screening channels (see main
text).
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Figure 2 | Artificial magnetic impurity. a, Scanning electron micrograph of
a device similar to that measured. The device consists of a small quantum dot
(magnetic impurity, left) coupled to conventional leads (top and bottom
left) and to a large quantum dot (finite reservoir, right). Electrons are
depleted under every gate by application of negative voltages. In the
experiments described here, voltages are varied on gates labelled c
(‘coupling’ between dots), bp (‘big dot plunger’), sp (‘small dot plunger’)
and n (‘nose’, which opens or closes the big dot). All transport measurements
presented in Figs 3 and 4 are measured with source and drain connected as
shown, in a magnetic field of 130 mT normal to the plane of the 2DEG.
b, With gate voltage n 5 0, the large dot opens into an infinite reservoir.
Arrows mark regions where the small dot has an unpaired spin, leading to
enhanced conductance at 12 mK (black) compared to 50 mK (red). Fitting
the temperature dependence of the conductance (b inset), we find that the
Kondo temperature ranges from 110 to 300 mK (see Supplementary
Information). In c, the data from b are shown for stronger tunnel coupling to
the right lead: c 5 2244 mV instead of 2282 mV. From the temperature
dependence of c, we find that TK ranges from 180 to 320 mK.
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In Fig. 4g we show the same data scaled as would be appropriate for
1CK behaviour (equation (3)) instead of 2CK. As anticipated, this
scaling fails completely: scaled data for different temperatures deviate
from each other even near zero bias. A two-dimensional nonlinear fit
to the data in Fig. 4f produces a value a2 5 0.62 6 0.21 (95% confid-
ence limits), consistent with 2CK behaviour. Naively, we would
expect 2CK behaviour to persist only up to {kT, eVds} < (kTK)2/
Ec < 1.7 meV (ref. 27). Empirically, 2CK persists to much higher
energies: conductance follows the 2CK scaling form up to
Vds 5 15 meV, corresponding to T 5 180 mK, even higher than TK.
Enhancement of 2CK energy scales has been predicted in our geo-
metry in the presence of charge fluctuations28, but is not expected to
be so dramatic for our parameter values.

Here we have presented data demonstrating the existence of
two independent 1CK states, along with a study of the associated
2CK state. Remarkably, the conductance of the symmetric 2CK
state matches not only a simple power law but rather a complete
theoretically calculated non-Fermi-liquid scaling function over a
broad range of energy (equation (5), Fig. 4f). In future, it would
be interesting to extend this scaling form theoretically and ex-
perimentally to cover the effects of a Zeeman field and slightly
asymmetric coupling to the two reservoirs—for example, to quanti-
tatively describe the family of curves in Fig. 4e. Finally, other para-
meter regimes of the same structure may show additional exotic
behaviour28,29.
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Figure 4 | Evidence for 2CK physics. a, Differential conductance as a
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reservoir. b–d, At c 5 2258, 2256 and 2254 mV, conductance may be
either enhanced or suppressed at zero bias, depending on the fine tuning of
the electrostatic potentials of the small dot and finite reservoir with gates sp
and bp, respectively. Red and blue indicate regions of suppressed
conductance or enhanced conductance, respectively, while grey indicates
relatively flat conductance around Vds 5 0. White regions are too close to
charge degeneracy of dot or finite reservoir to diagnose Kondo-induced
enhancement or suppression of conductance. Increased coupling to the
finite reservoir expands the region of suppressed conductance (red). The

yellow dashed line in b shows the setting of sp used in a, and the yellow dot
shows the approximate location in the charging hexagon of the symmetric
2CK point analysed in f and g. e, Differential conductance near zero bias
evolves with coupling c from zero-bias enhancement to zero-bias
suppression. For each curve, sp sets the small dot in the middle of a Kondo
valley and bp sets the finite reservoir midway between two charge degeneracy
points. f, g, Tuning bp near 2304.7 mV (bottom white arrow in a), we
observe that differential conductance depends on bias and temperature with
a 5 0.5, consistent with 2CK (f) and inconsistent with 1CK (g, which
attempts to apply scaling to exactly the same data, but with a 5 2.) In the
Supplementary Information we show the converse, namely that in the 1CK
region the 2CK scaling law does not fit, while the 1CK scaling does. A two-
dimensional nonlinear fit to the data set used for f and g yields
a2 5 0.62 6 0.21, consistent with a 5 0.5.
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Potok et al., Nature (2007) !

In Fig. 4g we show the same data scaled as would be appropriate for
1CK behaviour (equation (3)) instead of 2CK. As anticipated, this
scaling fails completely: scaled data for different temperatures deviate
from each other even near zero bias. A two-dimensional nonlinear fit
to the data in Fig. 4f produces a value a2 5 0.62 6 0.21 (95% confid-
ence limits), consistent with 2CK behaviour. Naively, we would
expect 2CK behaviour to persist only up to {kT, eVds} < (kTK)2/
Ec < 1.7 meV (ref. 27). Empirically, 2CK persists to much higher
energies: conductance follows the 2CK scaling form up to
Vds 5 15 meV, corresponding to T 5 180 mK, even higher than TK.
Enhancement of 2CK energy scales has been predicted in our geo-
metry in the presence of charge fluctuations28, but is not expected to
be so dramatic for our parameter values.

Here we have presented data demonstrating the existence of
two independent 1CK states, along with a study of the associated
2CK state. Remarkably, the conductance of the symmetric 2CK
state matches not only a simple power law but rather a complete
theoretically calculated non-Fermi-liquid scaling function over a
broad range of energy (equation (5), Fig. 4f). In future, it would
be interesting to extend this scaling form theoretically and ex-
perimentally to cover the effects of a Zeeman field and slightly
asymmetric coupling to the two reservoirs—for example, to quanti-
tatively describe the family of curves in Fig. 4e. Finally, other para-
meter regimes of the same structure may show additional exotic
behaviour28,29.
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scaling collapse!
(~conformal field theory)!



Hdot =
U
2
n̂2 +εd n̂

Phase,diagram,of,OGG,device,??,

grain 

εd ~Vg
ϕ

Hgrain = ξ
ξ ,σ
∑ aξ ,σ

+ aξ ,σ +
EC

2
N̂ 2 +ϕ N̂

•  no dot-grain Coulomb coupling!

•  many parameters!

Vg ~ εd, ϕ, Γ, Γg,…

Phase,diagram,of,OGG,device,??,

grain 

εd ~Vg
ϕ

rich phase diagram...!

SU(4) physics ?!
Spin 2-channel Kondo ? ! Charge 2-channel Kondo ? !

WHERE ARE THESE ???!

Stability,diagram,and,predicted,phases,

Γ,Γg ≈ 0

Vg ~ −εd

−ϕ

(n, N)!

(1,0)! (2,0)!

(0,1)! (1,1)!

(0,0)!



(1, N)! (2, N)!(0, N)!

Real,phase,diagram,(from,detailed,NRG),

Flexible open access Budapest DM-NRG code: http://www.phy.bme.hu/~dmnrg/!

Γ > Γg



Numerical,RenormalizaLon,Group,(NRG),calculaLons,

N̂ = : aξ ,σ
+ aξ ,σ :

ξ ,σ
∑Consider           ! !    as independent variable !!

Λ+ N = N +1Introduce ladder operator:  ! !!

tgaξ ,σ
+ dσ → tgΛ

+aξ ,σ
+ dσRewrite tunneling:  ! !!

Remarks!

•  ladder operator ~ pseudospin of Matveev!

Λ± ↔ T ±

•  Multiple Fock spaces (atrificial)!
projection to physical subspace !!

Do NRG with ! ! !symmetry!SU(2)×U(1)×U(1)

Q̂ ≡ N̂ − : aξ ,σ
+ aξ ,σ :

ξ ,σ
∑ = 0

ProjecLon,to,physical,subspace,

unprojected finite size spectrum! projected finite size spectrum (2CK)!
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LocaLng,nonGFermi,liquid,lines,???,

•  use finite size spectrum!

•  compute / measure spectral functions or G(T) ! check scaling collapse!

Find non-Fermi liquid lines:!
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Figure 2: Quantum phase transitions. a) NRG calculations of G(Vsd = 0) for symmetric
source-drain coupling (T = 20 mK). Parameters: U = 2 meV, � = 0.123 meV, �

G

= 0.106 meV,
E

C

= 0.15 meV, bandwidth D = 1 meV. 2CK lines are determined by analysis of the finite
size spectrum. b) The calculations of a) plotted with an "-dependent shift in � and rescaled by
a constant factor for comparison with c), to account for unequal source-drain couplings. White
lines indicate 2CK lines. c) Experimentally measured G(Vsd = 0). Gates VBWT and VLP act
approximately like �� and �". The dashed line indicates the cut direction of Fig. 3d. d) NRG
calculations of the equilibrium spectral functions A(!, T ) for ", � as marked in b). The black trace
is the spectral function A2CK(!, T, �P ) from CFT (�
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= �0.029⇡, T
K

= 19 µeV). e) Measured
G(Vsd, T ) for VLP, VBWT as marked in c). The black trace is Y2CK(!/T, �P )/
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, rescaled based
on an estimate of source-drain coupling asymmetry (�

P

= �0.016⇡, T
K

= 50 µeV). The range in
(eVsd/kT ) decreases as temperature increases because we measure a fixed range in Vsd.
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lines indicate 2CK lines. c) Experimentally measured G(Vsd = 0). Gates VBWT and VLP act
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•  Phase shifts visible!
•  Not simple 2CK spectrum...!

Remarks!



Check,universal,scaling,
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by universal crossover functions, similar to Eq. !29". We de-
termined these scaling functions numerically and displayed
them in Fig. 8. !The black curves were obtained by taking an
extremely small value of T* and chopping off the parts near
!#TK." The Fermi-liquid scale T* extracted from t!!" is

shown in Fig. 7!c", and is in excellent agreement with the
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According to Eq. !16", the real part of the conductance
can be computed from Im t!!" through a simple integration.
The resulting conductance curves are shown in Fig. 9. The
behavior of Re G!!" is strikingly similar to that of Im t: it
also exhibits a #$! singularity for J1=J2 and crosses over
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which connect two separate strong coupling fixed points, the
non-Fermi-liquid fixed point and the Fermi-liquid fixed
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merically the real part of the T matrix, Re t!!", and from
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where !λB ≡ {λx
B,λ

y
B,λz

B} = {λ4,λ5,λ6}. The perturbations as-
sociated with coupling constants λ7 and λ8 do not conserve
total charge22,23 and so are ignored here (although we note
that such operators can be of importance, for example, in the
context of strongly correlated superconductors40).

c1,cV ,cB = O(1) are fitting parameters39 that depend on
the model and on J , and TK ∝ e− 1

νJ is the Kondo temperature,
characterizing RG flow from the high-energy free fermion FP
to the NFL FP.19 We do not discuss the high-energy crossover
in the present work.

The various perturbations described by Eqs. (3) and (4)
describe very different physical processes—but the resulting
crossover scale Eq. (8), has a simple form due to an emergent
SO(8) symmetry of the effective NFL FP Hamiltonians, as
discussed in the following sections.

The main result of this paper is the NFL to FL crossover t
matrix, given by

2π iνTσα,σ ′α′(ω,T ) = δσσ ′δαα′ − Sσα,σ ′α′G
(

ω

T ∗ ,
T

T ∗

)
, (9)

where Sσα,σ ′α′ is the scattering S matrix, which is an ω = 0 and
T = 0 quantity characterizing the FL FP. For the 2CK model,
it is given by

S2CK
σα,σ ′α′ = [−δσσ ′(!λf · !ταα′ ) + i(!λB · !σσσ ′)δαα′ ]/λ, (10)

with !λf = {λ2,λ3,λ1}. For the 2IK model, it is

S2IK
σα,σ ′α′ =

[
− λ1δσσ ′δαα′ + iδσσ ′

(
λ2τ

x
αα′ + λ3τ

y
αα′

)

+ i(!λB · !σσσ ′)τ z
αα′

]
/λ. (11)

The single function G describes the crossover due to a
generic combination of relevant perturbations in both 2CK and
2IK models. It does not depend on details of the model or the
particular perturbations present, except through the resulting
crossover scale T ∗. Thus G(ω̃,T̃ ) is a universal function of
rescaled energy ω̃ = ω/T ∗ and temperature T̃ = T/T ∗. Our
exact result at finite temperature is

G(ω̃,T̃ ) =
−i√
2π3T̃
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)]
, (12)

where ) is the Gamma function and 2F1(a,b,c,z) is the Gauss
hypergeometric function.41 At T = 0, Eq. (12) reduces39 to
the result of Ref. 26:

G(ω̃,0) = 2
π

K [−iω̃] , (13)

where K[z] is the complete elliptic integral of the first kind,
yielding asymptotically G(ω̃,0) = 1 − iω̃/4 − (3ω̃/8)2 +
O(ω̃3) for ω̃ * 1 and G(ω̃,0) =

√
i

2π
[π − 2i ln(16ω̃)]ω̃−1/2 +

O(ω̃0) for ω̃ + 1.
Below we consider the local density of states (spectrum)

tασ (ω,T ), from which conductance can be calculated [see
Eqs. (5) and (7)]. It is related to the t matrix via Eq. (6),
and is thus given exactly along the NFL to FL crossover by
Eqs. (9)–(12):

tσα(ω,T ) = 1
2

− 1
2

Re[Sσα,σαG(ω̃,T̃ )], (14)

FIG. 3. (Color online) Spectrum tσL(ω,T ) vs ω/T ∗ for T/T ∗ =
10−1,1,10,102, approaching tσL = 1/2 from above (λ1 > 0) or below
(λ1 < 0). Circles show T = 0 result of Eq. (13).

where the required diagonal elements of the full S matrix
[Eqs. (10) and (11)] are more simply expressed as

S2CK
σα,σα =

(
− αλ1 + iσλz

B

)
/λ = αS2IK

σα,σα (15)

with σ = ±1 for spins ↑ / ↓ and α = ±1 for channel L/R
(and we use !λB ‖ ẑ for simplicity). For λx

f = λ
y
f = 0 and

λx
B = λ

y
B = 0, scattering preserves channel and spin, and the

FL phase shift δσα then follows from Sσα,σα = exp[2iδσα].
These exact results for the crossover are compared with
finite-temperature NRG calculations in Sec. VII, with excellent
agreement.

We now examine the generic behavior of the spectral
function at finite temperatures in the crossover regime.
Although we consider explicitly L-channel spectra tσL(ω,T )
in the following, note from Eq. (15) that tσL(ω,T ) ↔ tσR(ω,T )
upon exchanging *z ↔ −*z in the 2CK model, or !Bs ↔ − !Bs

in the 2IK model. Also, t↑α(ω,T ) ↔ t↓α(ω,T ) on reversing the
magnetic field, !B ↔ − !B (and in the zero-field case, σ =↑ and
↓ spectra are of course identical).

In Fig. 3, we take the representative case of finite channel
anisotropy *z in the 2CK model, or finite detuning (K − Kc)
in the 2IK model, and plot tσL(ω,T ) as a full function of ω/T ∗

for different temperatures T/T ∗. Since only λ1 acts in either
case, Sσα,σ ′α′ = ±δσσ ′δαα′ is diagonal [see Eqs. (10) and (11)],
meaning that an electron in channel α scatters elastically at
low energies, and stays in channel α. By Eq. (14), the spectrum
tσα(ω,T ) then probes the real part of the universal function G
because Sσα,σα is real.

General scaling arguments suggest that RG flow stops
on an energy scale given by the temperature. As seen from
Fig. 3, this is indeed the case, with the spectrum tσL(ω,T ) 0
tσL(0,T ) essentially constant for |ω| * T . Mutatis mutandis,
for T * T ∗ one obtains tσL(ω,T ) 0 tσL(ω,0), corresponding
to the T = 0 limit considered previously.26 At T = 0 and
ω = 0, Eq. (14) yields tσα(0,0) = 1

2 − 1
2 ReSσα,σα , which is

determined solely by the S matrix and hence the phase shift
associated with the stable FL FP. When only λ1 acts, the
spectrum is thus tσα(0,0) = 0 or 1 only (with corresponding
phase shifts 0 or π/2). In particular, the Kondo phase is
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These exact results for the crossover are compared with
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crossover scale T ∗. Thus G(ω̃,T̃ ) is a universal function of
rescaled energy ω̃ = ω/T ∗ and temperature T̃ = T/T ∗. Our
exact result at finite temperature is

G(ω̃,T̃ ) =
−i√
2π3T̃
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, (12)

where ) is the Gamma function and 2F1(a,b,c,z) is the Gauss
hypergeometric function.41 At T = 0, Eq. (12) reduces39 to
the result of Ref. 26:

G(ω̃,0) = 2
π

K [−iω̃] , (13)

where K[z] is the complete elliptic integral of the first kind,
yielding asymptotically G(ω̃,0) = 1 − iω̃/4 − (3ω̃/8)2 +
O(ω̃3) for ω̃ * 1 and G(ω̃,0) =

√
i

2π
[π − 2i ln(16ω̃)]ω̃−1/2 +

O(ω̃0) for ω̃ + 1.
Below we consider the local density of states (spectrum)

tασ (ω,T ), from which conductance can be calculated [see
Eqs. (5) and (7)]. It is related to the t matrix via Eq. (6),
and is thus given exactly along the NFL to FL crossover by
Eqs. (9)–(12):

tσα(ω,T ) = 1
2

− 1
2

Re[Sσα,σαG(ω̃,T̃ )], (14)

FIG. 3. (Color online) Spectrum tσL(ω,T ) vs ω/T ∗ for T/T ∗ =
10−1,1,10,102, approaching tσL = 1/2 from above (λ1 > 0) or below
(λ1 < 0). Circles show T = 0 result of Eq. (13).

where the required diagonal elements of the full S matrix
[Eqs. (10) and (11)] are more simply expressed as

S2CK
σα,σα =

(
− αλ1 + iσλz

B

)
/λ = αS2IK

σα,σα (15)

with σ = ±1 for spins ↑ / ↓ and α = ±1 for channel L/R
(and we use !λB ‖ ẑ for simplicity). For λx

f = λ
y
f = 0 and

λx
B = λ

y
B = 0, scattering preserves channel and spin, and the

FL phase shift δσα then follows from Sσα,σα = exp[2iδσα].
These exact results for the crossover are compared with
finite-temperature NRG calculations in Sec. VII, with excellent
agreement.

We now examine the generic behavior of the spectral
function at finite temperatures in the crossover regime.
Although we consider explicitly L-channel spectra tσL(ω,T )
in the following, note from Eq. (15) that tσL(ω,T ) ↔ tσR(ω,T )
upon exchanging *z ↔ −*z in the 2CK model, or !Bs ↔ − !Bs

in the 2IK model. Also, t↑α(ω,T ) ↔ t↓α(ω,T ) on reversing the
magnetic field, !B ↔ − !B (and in the zero-field case, σ =↑ and
↓ spectra are of course identical).

In Fig. 3, we take the representative case of finite channel
anisotropy *z in the 2CK model, or finite detuning (K − Kc)
in the 2IK model, and plot tσL(ω,T ) as a full function of ω/T ∗

for different temperatures T/T ∗. Since only λ1 acts in either
case, Sσα,σ ′α′ = ±δσσ ′δαα′ is diagonal [see Eqs. (10) and (11)],
meaning that an electron in channel α scatters elastically at
low energies, and stays in channel α. By Eq. (14), the spectrum
tσα(ω,T ) then probes the real part of the universal function G
because Sσα,σα is real.

General scaling arguments suggest that RG flow stops
on an energy scale given by the temperature. As seen from
Fig. 3, this is indeed the case, with the spectrum tσL(ω,T ) 0
tσL(0,T ) essentially constant for |ω| * T . Mutatis mutandis,
for T * T ∗ one obtains tσL(ω,T ) 0 tσL(ω,0), corresponding
to the T = 0 limit considered previously.26 At T = 0 and
ω = 0, Eq. (14) yields tσα(0,0) = 1

2 − 1
2 ReSσα,σα , which is

determined solely by the S matrix and hence the phase shift
associated with the stable FL FP. When only λ1 acts, the
spectrum is thus tσα(0,0) = 0 or 1 only (with corresponding
phase shifts 0 or π/2). In particular, the Kondo phase is
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(and we use !λB ‖ ẑ for simplicity). For λx

f = λ
y
f = 0 and

λx
B = λ

y
B = 0, scattering preserves channel and spin, and the

FL phase shift δσα then follows from Sσα,σα = exp[2iδσα].
These exact results for the crossover are compared with
finite-temperature NRG calculations in Sec. VII, with excellent
agreement.

We now examine the generic behavior of the spectral
function at finite temperatures in the crossover regime.
Although we consider explicitly L-channel spectra tσL(ω,T )
in the following, note from Eq. (15) that tσL(ω,T ) ↔ tσR(ω,T )
upon exchanging *z ↔ −*z in the 2CK model, or !Bs ↔ − !Bs

in the 2IK model. Also, t↑α(ω,T ) ↔ t↓α(ω,T ) on reversing the
magnetic field, !B ↔ − !B (and in the zero-field case, σ =↑ and
↓ spectra are of course identical).

In Fig. 3, we take the representative case of finite channel
anisotropy *z in the 2CK model, or finite detuning (K − Kc)
in the 2IK model, and plot tσL(ω,T ) as a full function of ω/T ∗

for different temperatures T/T ∗. Since only λ1 acts in either
case, Sσα,σ ′α′ = ±δσσ ′δαα′ is diagonal [see Eqs. (10) and (11)],
meaning that an electron in channel α scatters elastically at
low energies, and stays in channel α. By Eq. (14), the spectrum
tσα(ω,T ) then probes the real part of the universal function G
because Sσα,σα is real.

General scaling arguments suggest that RG flow stops
on an energy scale given by the temperature. As seen from
Fig. 3, this is indeed the case, with the spectrum tσL(ω,T ) 0
tσL(0,T ) essentially constant for |ω| * T . Mutatis mutandis,
for T * T ∗ one obtains tσL(ω,T ) 0 tσL(ω,0), corresponding
to the T = 0 limit considered previously.26 At T = 0 and
ω = 0, Eq. (14) yields tσα(0,0) = 1

2 − 1
2 ReSσα,σα , which is

determined solely by the S matrix and hence the phase shift
associated with the stable FL FP. When only λ1 acts, the
spectrum is thus tσα(0,0) = 0 or 1 only (with corresponding
phase shifts 0 or π/2). In particular, the Kondo phase is

235127-4

G T
T *
, eV
T *
, δ

!

"
#

$

%
&

ExtracLng,T"*,from,experimental,data,
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T * ~ (ϕ −ϕQCP )
2•  FL scale vanishes at QCP: !

•  Phase shift jupms by ! δ→δ +π / 2

Real,phase,diagram,(from,detailed,NRG),

Flexible open access Budapest DM-NRG code: http://www.phy.bme.hu/~dmnrg/!

Γ > Γg

Charge,and,spin,suscepLbility,

εd /U

ϕ / EC

charge susceptibility! spin susceptibility!

εd /U

Conclusions,

•  Phase diagram: !2CK lines coexisting !
!with SU(4) regions !!

•  Verification of phase shifted spectrum/scaling !

•  FL scale vanishing at criticality!

•  Observation of universal 2CK -> FL cross-over!

Theory!

Experiment!

•  Indications of charge Kondo state and SU(4) physics... !
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