Universal Fermi liquid crossover and quantum criticality in a mesoscopic device

Gergely Zarand

Budapest Univ. Technology and Economics

Collaborators:

Experiments:	Stanford:	Andrew Keller
		Lucas Peeters
		David Goldhaber-Gordon
	Weizmann:	D. Mahalu and V. Umansky
Theory:	Rudanost:	Pascu Moca
	Buuapest.	Fascu Moca
	Poznan:	Ireneusz Weymann
	A. Keller et al, pr	eprint arxiv.org/1504.07620
	NPSMP Symposium, Tokyo, 2015	

Choice of device

Tunable charge and spin 2-channel Kondo effect

Other possibilities:

Dissipative transitions: Mebrahtu et al, Nature Physics (2013) 2-channel device (Frederic Pierre's group, 2015)

Goal: control/investigate QPT in a nano-device and address

Kondo Hamiltonian

• No charge transfer between "1" and "2"

• Competition between channels "1" and "2"

The 2-channel Kondo quantum criticality (2)

Universal non-FL to FL cross-over at T*!

The Oreg - Goldhaber-Gordon (OGG) device

- charge transfer to grain forbidden at energies $\epsilon, T \iff E_C$
- grain (Γ_a) and leads (Γ) compete to screen the spin

Oreg and Goldhaber-Gordon, PRL (2003); Potok et al., Nature (2007)

The Oreg - Goldhaber-Gordon device (2): transport in 1 electron limit

The Oreg - Goldhaber-Gordon device (2): transport in 1 electron limit

Potok et al., Nature (2007)

Phase diagram of OGG device ??

- no dot-grain Coulomb coupling
- many parameters

 $V_g \sim \varepsilon_d, \ \varphi, \ \Gamma, \ \Gamma_g, \dots$

Stability diagram and predicted phases

WHERE ARE THESE ???

Real phase diagram (from detailed NRG)

Flexible open access Budapest DM-NRG code: http://www.phy.bme.hu/~dmnrg/

Numerical Renormalization Group (NRG) calculations

Do NRG with $SU(2) \times U(1) \times U(1)$ symmetry

Remarks

• ladder operator ~ pseudospin of Matveev

 \Rightarrow

 $\Lambda^{\scriptscriptstyle\pm} \, \nleftrightarrow \, T^{\scriptscriptstyle\pm}$

• Multiple Fock spaces (atrificial)

projection to physical subspace ! $\hat{Q} = \hat{N} - \sum_{\xi,\sigma} a_{\xi,\sigma}^{*} a_{\xi,\sigma} := 0$

Locating non-Fermi liquid lines ???

Find non-Fermi liquid lines:

• compute / measure spectral functions or $G(T) \Rightarrow$ check scaling collapse

Locating non-Fermi liquid lines

• use finite size spectrum

Projection to physical subspace

unprojected finite size spectrum

Flexible open access Budapest DM-NRG code: http://www.phy.bme.hu/~dmnrg/

A. I. Toth, C. P. Moca, O. Legeza, and G.Z., PRB 78, 245109 (2008); C. P. Moca, A. Alex, J. v. Delft, and G.Z., PRB 86, 195128 (2012).

Remarks

- · Phase shifts visible
- Not simple 2CK spectrum...

Deviations from universal scaling...

Slightly off the 2-channel Kondo points...

Deviations from critical scaling

• Cross-over between two strong coupling fixed points

Universal cross-over to FL

Sela, Mitchell, and Fritz, PRL (2011); Mitchell and Sela, PRB (2012).

Extracting T^* from experimental data

Extracting *T*^{*} from experimental data

- FL scale vanishes at QCP: $T^* \sim (\varphi \varphi_{OCP})^2$
- Phase shift jupms by $\delta \rightarrow \delta + \pi/2$

Real phase diagram (from detailed NRG)

Conclusions

Theory

 Phase diagram: 2CK lines coexisting with SU(4) regions !

• Verification of phase shifted spectrum/scaling

Experiment

- FL scale vanishing at criticality
- Observation of universal 2CK -> FL cross-over
- Indications of charge Kondo state and SU(4) physics...

A. Keller et al, preprint arxiv.org/1504.07620 DM-NRG code: http://www.phy.bme.hu/~dmnrg/

Flexible open access Budapest DM-NRG code: http://www.phy.bme.hu/~dmnrg/