NPSMP2015 Symposium 2015/6/11

Valley Hall effect in electrically spatial inversion symmetry broken bilayer graphene

<u>Yuya Shimazaki</u>¹, Michihisa Yamamoto^{1, 2}, Ivan V. Borzenets¹, Kenji Watanabe³, Takashi Taniguchi³, and Seigo Tarucha^{1, 4}

¹Department of Applied Physics, University of Tokyo

²PRESTO, JST

³Advanced Material Laboratory, National Institute for Materials Science

⁴Center for Emergent Matter Science, RIKEN

THE UNIVERSITY OF TOKYO

Honeycomb lattice systems

H. Zeng *et al., Nature Nanotechnol.* **7**, 490 (2012)

Valley degree of freedom

The rise of Valleytronics

Inversion symmetry broken honeycomb lattice

Inversion symmetry broken honeycomb lattice

D. Xiao et al., Rev. Mod. Phys. 82, 1959 (2010)

Valley Hall effect

Berry curvature: "Magnetic field in momentum space"

Lorentz force

Valley Hall effect

Velocity

D. Xiao et al, Phys. Rev. Lett. 99, 236809 (2007)

How to break inversion symmetry?

Initially symmetry broken

K. F. Mak *et al., Science* **344**, 1489 (2014) R. V. Gorbachev *et al., Science* **346**, 448 (2014)

Structurally inversion symmetry broken system

 \rightarrow Valley Hall effect has been reported

How to break inversion symmetry?

Initially symmetry broken

K. F. Mak *et al., Science* **344**, 1489 (2014) R. V. Gorbachev *et al., Science* **346**, 448 (2014)

Structurally inversion symmetry broken system

 \rightarrow Valley Hall effect has been reported

How to break inversion symmetry?

Initially symmetry broken

K. F. Mak *et al., Science* **344**, 1489 (2014) R. V. Gorbachev *et al., Science* **346**, 448 (2014)

Structurally inversion symmetry broken system →Valley Hall effect has been reported Perpendicular electric field

Electrically inversion symmetry broken system

Further controllability

Dual gate structure

Independent control of

Perpendicular electric field(*D*) Carrier density

J. B. Oostinga *et al, Nature Materials* **7**, 151 (2008)

Dual gate structure

Independent control of

Perpendicular electric field(*D*) Carrier density

J. B. Oostinga *et al, Nature Materials* 7, 151 (2008)

Dual gate structure

Independent control of

Perpendicular electric field(*D*) Carrier density

J. B. Oostinga *et al, Nature Materials* **7**, 151 (2008)

Dual gate structure

Valley Hall effect

Valley current mediated nonlocal transport

Nonlocal transport measurement in spintronics field

Spin current detection by ISHE

S. O. Valenzuela *et al., Nature* **442**, 176 (2006)

Spin current generation by SHE

T. Kimura *et al., Phys. Rev. Lett.* **98**, 156601 (2007)

AFM image before top h-BN deposition

Mobility~15,000cm²/Vs

Trivial nonlocal transport : Ohmic contribution

Measurement result vs Ohmic contribution

Calculated Ohmic contribution from

$$R_{NL}^{\rm Ohm} = \frac{\rho}{\pi} \exp\left(-\pi \frac{L}{w}\right)$$

Observed nonlocal resistance is much larger (5,000 times) than Ohmic contribuion

Quantitatively not Ohmic contribution

Sequential conversion picture

At charge neutrality point, changed perpendicular electric field

- \rightarrow Bandgap size changes
- Resistivity *p* changes

• Valley Hall conductivity σ_{xy}^{VH} is constant

$$R_{\rm NL} \propto \left(\sigma_{xy}^{\rm VH}\right)^2 \rho^3 \propto \rho^3$$

Valley Hall angle dependence of nonlocal resistance

27

Valley Hall angle dependence of nonlocal resistance

$$R_{\rm NL} \quad \frac{W}{2} \frac{2}{\frac{1}{1}} \exp \frac{L}{2}$$

Valley Hall angle:

$$\frac{VH}{xy}$$
 / xx

For small valley Hall angle: = 1

$$R_{\rm NL} = \frac{W}{2} \frac{\frac{VH^{2}}{xy}}{\frac{3}{xr}} \exp \frac{L}{2}$$

$$R_{\rm NL} = \frac{W}{2} \frac{1}{xx} \exp \frac{L}{x}$$

Reproduces

D. A. Abanin et al., Phys. Rev. B 79, 035304 (2009)

Temperature dependence

• Insulating behavior due to gap opening

• Crossover behavior for both ρ^{\max} and R_{NL}^{\max} between high T and low T region

Fitting function

$$\frac{1}{\rho^{\max}} = \frac{1}{\rho_1} \exp\left(-\frac{E_1^{\mathrm{L}}}{k_{\mathrm{B}}T}\right) + \frac{1}{\rho_2} \exp\left(-\frac{E_2^{\mathrm{L}}}{k_{\mathrm{B}}T}\right)$$

Band conductionHopping conduction(Thermal activation
across bandgap)(Nearest neighbor hopping)

K. Zou et al., Phys. Rev. B 82, 081407 (2010)

Fitting function

$$\frac{1}{R_{\rm NL}^{\rm max}} = \frac{1}{R_1} \exp\left(-\frac{E_1^{\rm NL}}{k_{\rm B}T}\right) + \frac{1}{R_2} \exp\left(-\frac{E_2^{\rm NL}}{k_{\rm B}T}\right)$$

High T

Activation energy

From $R_{\rm NL} \propto \rho^3$, $E_1^{\rm NL} = 3E_1^{\rm L}$ is expected

Experiment by Fudan group

Gate-tunable Topological Valley Transport in Bilayer Graphene M. Sui *et al.,* arXiv:1501.04685 (2015)

Summary

- In electrically spatial inversion symmetry broken bilayer graphene, we observed the signature of valley Hall effect and pure valley current which is cubic scaling relation: $R_{\rm NL} \propto \rho^3$
- We observed the crossover behavior in scaling relation for higher displacement field region, which is still open question
- Nonlocal transport was detected even in insulating regime, indicates pure valley current can flow in insulating regime
- Our highly controllable system provides further possibility for the investigation of topological current in insulator and application to valleytronics

Graphene valleytronics

- Appropriate system to study valley current transport
 - Graphene has long inter-valley scattering length
- Appropriate system for mesoscopic experiment
 - Super high mobility (>1,000,000cm²/Vs) graphene device has been reported
- Topological property is gate controllable
 - Tunable Berry curvature
 - Switchable valley Chern number

I. Martin et al., Phys. Rev. Lett. 100, 036804 (2008)

Acknowledgements

We acknowledge fruitful discussion with Prof. L. S. Levitov, Dr. J. C. W. Song, Prof. M. Koshino, Dr. M. Ezawa and Prof. N. Nagaosa