New Perspectives in Spintronic and Mesoscopic Physics ISSP, University of Tokyo, June 10, 2015

Conversion from single photons to single electron spins using **GaAs-based quantum dots**

A. Oiwa¹, T. Fujita^{2,3}, and S. Tarucha^{2,4}

¹*The Institute of Scientific and Industrial Research, Osaka University* ² Department of Applied Physics. The University of Tokyo ³Kavli Institute of Nanoscience Delft, Quantum Transport, TU Delft ⁴Center for Emergent Matter Science, RIKEN

Email: oiwa@sanken.osaka-u.ac.jp

RUHR UNIVERSITÄT

CONTENTS

Non-destructive and robust single photon detection using interdot tunneling in double quantum dots

Spin discrimination of the single photoelectrons using Pauli spin blockade

Angular momentum conversion from single photons to single electron spins

Time (sec)

0.2

0.3

aPc (nA)

0.44

-0.1

SPIN QUBITS USING GATE-DEFINED QDS

SPIN QUBIT IN ELECTRICALLY CONTROLLED QUANTUM DOTS

M. D. Shulman et al., Science 336, 202 (2012).

GLOBAL QUANTUM NETWORK

Secure information communications Quantum communications and quantum computing

LONG DISTANCE QUANTUM COMMUNICATION

> Lateral QDs as photon - electron spin quantum interface

COHERENT QUANTUM STATE TRANSFER

COHERENT QUANTUM STATE TRANSFER

➢ Photon polarization state ⇒ electron spin state

 $|\phi\rangle_{ph} = \alpha \left|\sigma^{+}\right\rangle + \beta \left|\sigma^{-}\right\rangle$

$$\begin{aligned} |\phi\rangle_{eh} &= |-\rangle_{lh} \otimes \\ &\left\{ \alpha |1/2\rangle + \beta |-1/2\rangle \right\} \end{aligned}$$

Quantum wells with controlled electron and hole g-factors

[R. Vrijen and E. Yablonovitch. Physica E, 10, 569 (2001).]

Based on spin selective optical excitation

PRECEDING WORKS

Coherent transfer from photon polarization to electron spin in QW in *ensemble*

H. Kosaka et al., Phys. Rev. Lett., 100, 096602 (2008).

Single photon detection in electrically controllable QDs

[M. Kuwahara et al., Appl. Phys. Lett. 96, 163107 (2010).]

TOWARDS COHERENT SINGLE QUBIT TRANSFER

Energy Transfer

Coherent Transfer

$$\alpha |\sigma+\rangle + \beta |\sigma-\rangle \qquad \swarrow \qquad \alpha |\uparrow\rangle + \beta |\downarrow\rangle$$

QW ELECTRON g-FACTOR TUNING

Electron g-factors in QW

QW (double heterojunction)

QW parameters

Wafer	J65	J67	J107	14155
Well width (Å)	70	92	130	73
Carrier density (x 10 ¹¹ cm ⁻²)	2.1	2.3	3.9	2.1
Mobility (x 10 ⁶ cm ² /Vs)	0.50	0.37	-	0.10
g_e -factor $ g_e $	0.18	0.26	0.39	0.12

[G. Allison et al., submitted; T. Fujita et al., ICPS, Zurich (2012). Invited]

LATERAL QUANTUM DOTS

Flexibility in gate geometry Highly controllable Highly sensitive charge detection

MEASUREMENT

SEM picture

> Optical Mask

• Laterally defined DQD on GaAs/AlGaAs QW

- QPC or QD charge sensor (Left side)
- Metal mask with small aperture (400nm diameter) on left QD
- Cryogen free dilution fridge (base T=25mK)

Double dot (charge sensing)

CONTENTS

Non-destructive and robust single photon detection using interdot tunneling in double quantum dots

Spin discrimination of the single photoelectrons using Pauli spin blockade

Angular momentum conversion from single photons to single electron spins

SINGLE PHOTO-ELECTRON TRAPPING

- Average photons through aperture : ~3 photons/pulse
- Clear discrimination of single photo-electrons with resonant inter-dot tunneling

Stable photon irradiation and single photo-electron trapping

[T. Fujita *et al.*, Phys. Rev. Lett. **110**, 266803 (2013).]

WAVELENGTH DEPENDENCE

Resonant excitation in quantum well

Demonstration of wavelength selectivity in g-engineered QDs

[K. Morimoto et al., PRB **90**, 085306 (2014).] ¹⁶

CONTENTS

Non-destructive and robust single photon detection using interdot tunneling in double quantum dots

Spin discrimination of the single photoelectrons using Pauli spin blockade

Angular momentum conversion from single photons to single electron spins

0.2

-1.65 T

Cos fit '+1.65 1

REAL-TIME SINGLE-SHOT SINGLE SPIN READOUT

Pauli spin blockade as a single spin detector

Anti-parallel: $(1,1) \rightarrow (0,2)$

Real-time Spin Blockade

> (1,1)↔(0,2) resonance in finite field

• Real-time signal

Spin detection with resonant inter-dot tunneling

Spin blocakde lifting mechanisms

[A. C. Johnson et al., Nature 435, 925 (2005).]

PHOTO-ELECTRON SPIN DETECTION

Measurement scheme of photo-electron spin detection with spin blockade

SINGLE PHOTO-ELECTRON SPIN DETECTION

Detection of photo-generated electron spins

PHOTON POLARIZATION DEPENDENCE

Polarization dependence of excited spins

DISTINGUISHABILITY OF PHOTOELECTRON SPINS

Spin of prepared electron

Boltzmann distribution of down spin

$$g_e \mu B \bigvee_{I} = Error$$

$$\frac{\exp\left(-\frac{g_e \mu B}{k_B T}\right)}{1 + \exp\left(-\frac{g_e \mu B}{k_B T}\right)} = Error$$

Success

Error

FUTURE PLAN

> Towards coherent angular momentum transfer

LH excitation Faster spin detection Spin manipulation for tomography measurement

Improvement of trapping efficiency Cavity structure, micro lens

ENTANGLEMENT BETWEEN A PHOTON AND A SPIN

SUMMARY

Non-destructive and robust single photon detection using interdot tunneling in double quantum dots

Spin discrimination of the single photoelectrons using Pauli spin blockade

Angular momentum conversion from single photons to single electron spins

(PA)

-0.1

aPc (nA)

0.44

Time (sec)

0.2

0.3

CO-WORKERS

Department of Applied Physics, University of Tokyo

Kazuhiro Morimoto, Marcus Larsson, Yosuke Sato, Kazuyuki Kuroyama and Sadashige Matsuo

Center for Emergent Matter Science (CEMS), RIKEN, Saitama, Japan Giles Allison, Peter Stano

The Institute of Scientific and Industrial Research, Osaka Unievrsity Haruki Kiyama

Lehrstuhl für Angewandte Festkörperphysik, Ruhr-Universität Bochum, Bochum, Germany Arne Ludwig and Andreas Wieck