

spin Hall angle dispersion induced Hall effect

- Hall detection of spin accumulation in normal metal

Dazhi Hou (侯达之), Z. Qiu, R. Iguchi, K. Sato, E. K. Vehstedt, K. Uchida, G. E. W. Bauer, E. Saitoh

• $\partial \theta_{\rm SHE} / \partial \varepsilon$ —> Hall probe of spin accumulation

- Hall detection of the spin accumulation due to:
 - spin pumping
 - spin Seebeck

T-dependence of spin transport in AFM

the outline

 $\partial \theta_{\rm SHE} / \partial \varepsilon$ —> Hall probe of spin accumulation

- Hall detection of the spin accumulation due to:
 - spin pumping
 - spin Seebeck

T-dependence of spin transport in AFM

(Pure) spin Hall effect no magnetic field necessary

No Hall voltage but spin accumulation

(Pure) spin Hall effect no magnetic field necessary

No Hall voltage but spin accumulation

spin Hall angle: $\theta_{
m SHE}=j_s/j_c$

$$P = \frac{j^{\uparrow} - j^{\downarrow}}{j^{\uparrow} + j^{\downarrow}}$$

"spin injection Hall effect"

shared formula of Hall current:

P > 1%

$$j_H = P\theta_{\rm SHE} j_c$$

"spin injection Hall effect"

shared formula of Hall current:

P > 1%

$$j_H = P\theta_{\rm SHE} j_c$$

 \Rightarrow to detect *P* in metal~0.0001%, $\theta_{\rm SHE}$ > 1 needed

"spin injection Hall effect"

shared formula of Hall current:

P > 1%

$$j_H = P\theta_{\rm SHE} j_c + \dots$$

 \Rightarrow to detect *P* in metal~0.0001%, $\theta_{\rm SHE}$ > 1 needed

x sensitivity down to 0.0001% spin polarization in metals

total Hall current: $\mathbf{j}_{AHE} = \mathbf{j}_{H}^{\uparrow} + \mathbf{j}_{H}^{\downarrow}$ Hall current in two sub-bands: $\mathbf{j}_{H}^{\uparrow(\downarrow)} = \sigma_{SHE}^{\uparrow(\downarrow)} \boldsymbol{\sigma} \times \mathbf{E}$

total Hall current: $\mathbf{j}_{AHE} = \mathbf{j}_{H}^{\uparrow} + \mathbf{j}_{H}^{\downarrow}$ Hall current in two sub-bands: $\mathbf{j}_{H}^{\uparrow(\downarrow)} = \sigma_{SHE}^{\uparrow(\downarrow)} \boldsymbol{\sigma} \times \mathbf{E}$ for small μ_s , we have:

 $\sigma_{\rm SHE}^{\uparrow(\downarrow)} = 1/2[\sigma_{\rm SHE} \pm (\partial \sigma_{\rm SHE}/\partial \varepsilon)\mu_s/2]$

total Hall current: $\mathbf{j}_{AHE} = \mathbf{j}_{H}^{\uparrow} + \mathbf{j}_{H}^{\downarrow}$ Hall current in two sub-bands: $\mathbf{j}_{H}^{\uparrow(\downarrow)} = \sigma_{SHE}^{\uparrow(\downarrow)} \boldsymbol{\sigma} \times \mathbf{E}$ for small μ_s , we have:

$$\sigma_{\rm SHE}^{\uparrow(\downarrow)} = 1/2[\sigma_{\rm SHE} \pm (\partial \sigma_{\rm SHE}/\partial \varepsilon)\mu_s/2]$$

spin accumulation Hall effect (SaHE) $\mathbf{j}_{\mathrm{SaHE}} = \frac{\mu_s}{2} \frac{\partial \sigma_{\mathrm{SHE}}}{\partial \varepsilon} \frac{-\widetilde{\mathbf{m}}}{|\widetilde{\mathbf{m}}|} \times \mathbf{E}$

total Hall current: $\mathbf{j}_{AHE} = \mathbf{j}_{H}^{\uparrow} + \mathbf{j}_{H}^{\downarrow}$ Hall current in two sub-bands: $\mathbf{j}_{H}^{\uparrow(\downarrow)} = \sigma_{SHE}^{\uparrow(\downarrow)} \boldsymbol{\sigma} \times \mathbf{E}$ for small μ_s , we have:

$$\sigma_{\rm SHE}^{\uparrow(\downarrow)} = 1/2[\sigma_{\rm SHE} \pm (\partial \sigma_{\rm SHE}/\partial \varepsilon)\mu_s/2]$$

conventional AHE in ferromagnet ${f j}_{
m AHE}=\sigma_{
m AHE}rac{-{f M}}{|{f M}|} imes{f E}$

spin accumulation Hall effect (SaHE) $\mathbf{j}_{\mathrm{SaHE}} = \frac{\mu_s}{2} \frac{\partial \sigma_{\mathrm{SHE}}}{\partial \varepsilon} \frac{-\widetilde{\mathbf{m}}}{|\widetilde{\mathbf{m}}|} \times \mathbf{E}$

$$\mathbf{j}_{\mathrm{SaHE}} = \frac{\mu_s}{2} \frac{\partial \sigma_{\mathrm{SHE}}}{\partial \varepsilon} \frac{-\widetilde{\mathbf{m}}}{|\widetilde{\mathbf{m}}|} \times \mathbf{E}$$

$$\mathbf{j}_{\mathrm{SaHE}} = \frac{\mu_s}{2} \frac{\partial \sigma_{\mathrm{SHE}}}{\partial \varepsilon} \frac{-\widetilde{\mathbf{m}}}{|\widetilde{\mathbf{m}}|} \times \mathbf{E} \qquad \theta_{\mathrm{SHE}} = \sigma_{\mathrm{SHE}} / \sigma$$

$$\mathbf{j}_{\mathrm{SaHE}} = \frac{\mu_s}{2} \frac{\partial \sigma_{\mathrm{SHE}}}{\partial \varepsilon} \frac{-\widetilde{\mathbf{m}}}{|\widetilde{\mathbf{m}}|} \times \mathbf{E} \qquad \theta_{\mathrm{SHE}} = \sigma_{\mathrm{SHE}} / \sigma$$
$$\frac{\partial \sigma_{\mathrm{SHE}}}{\partial \varepsilon} = \frac{\partial \sigma}{\partial \varepsilon} \theta_{\mathrm{SHE}} + \frac{\partial \theta_{\mathrm{SHE}}}{\partial \varepsilon} \sigma$$

$$\mathbf{j}_{\mathrm{SaHE}} = \frac{\mu_s}{2} \frac{\partial \sigma_{\mathrm{SHE}}}{\partial \varepsilon} \frac{-\widetilde{\mathbf{m}}}{|\widetilde{\mathbf{m}}|} \times \mathbf{E} \qquad \theta_{\mathrm{SHE}} = \sigma_{\mathrm{SHE}} / \sigma$$
$$\frac{\partial \sigma_{\mathrm{SHE}}}{\partial \varepsilon} = \frac{\partial \sigma}{\partial \varepsilon} \theta_{\mathrm{SHE}} + \frac{\partial \theta_{\mathrm{SHE}}}{\partial \varepsilon} \sigma$$
$$P = \frac{\mu_s}{2} \frac{\partial \sigma / \partial \varepsilon}{\sigma}$$

Hall contribution from spin Hall angle dispersion

Hall contribution from spin Hall angle dispersion

Hall resistance estimation for 20 nm Culr alloy:

Hall contribution from spin Hall angle dispersion

Hall resistance estimation for 20 nm Culr alloy:

• $\partial \theta_{\rm SHE} / \partial \varepsilon$ —> Hall probe of spin accumulation

- Hall detection of the spin accumulation by:
 - spin pumping
 - spin Seebeck

T-response of spin current transport in AFM

Hall measurement setup

Hall measurement setup

Hall measurement setup

Experiment: Hall signal in Cu₉₅Ir₅/YIG

microwave off: only normal Hall

Experiment: Hall signal in Cu₉₅Ir₅/YIG

 $\mathbf{E}_{\mathrm{SaHE}} \sim \mathbf{j}_c imes \widetilde{\mathbf{m}}$

$\boldsymbol{j}_c \, \text{and} \, \widetilde{\boldsymbol{m}} \, \, \text{symmetry of the Hall signal}$

$$\mathbf{E}_{\mathrm{SaHE}} \sim \mathbf{j}_c imes \widetilde{\mathbf{m}}$$

 $\mathbf{E}_{\mathrm{SaHE}}(\mathbf{j}_c) = -\mathbf{E}_{\mathrm{SaHE}}(-\mathbf{j}_c) \qquad \mathbf{E}_{\mathrm{SaHE}}(\widetilde{\mathbf{m}}) = -\mathbf{E}_{\mathrm{SaHE}}(-\widetilde{\mathbf{m}})$

Hall detection of ppm spin polarization

Thickness dependence

Hall resistance of spin accumulation AHE:

 $R_{AHE} = \frac{V_{AHE}}{I} = -\frac{1}{2\sigma^2 d} \frac{\partial \sigma_{SHE}}{\partial \varepsilon} \bar{\mu}_s \sin \theta_M$ fitting result: $\partial \sigma_{SHE} / \partial \varepsilon = -9620 \ \Omega^{-1} \text{m}^{-1} / \text{meV}$ $\frac{\partial \sigma_{SHE}}{\partial \varepsilon} = \frac{\partial \sigma}{\partial \varepsilon} \theta_{SHE} + \frac{\partial \theta_{SHE}}{\partial \varepsilon} \sigma$ evaluate the first term:

 $\theta_{\rm SHE} \partial \sigma / \partial \varepsilon = -35 \ \Omega^{-1} {\rm m}^{-1} / {\rm meV}$

Dazhi Hou et al., arXiv:1503.00816

Thickness dependence

Hall resistance of spin accumulation AHE:

$$\frac{\partial \sigma_{\rm SHE}}{\partial \varepsilon} = \frac{\partial \sigma}{\partial \varepsilon} \theta_{\rm SHE} + \frac{\partial \theta_{\rm SHE}}{\partial \varepsilon} \sigma$$

evaluate the first term:

$$\theta_{\rm SHE} \partial \sigma / \partial \varepsilon = -35 \ \Omega^{-1} {\rm m}^{-1} / {\rm meV}$$

spin Hall angle energy derivative

$$\partial \theta_{\rm SHE} / \partial \varepsilon = -2.6$$
 /eV.

Dominent Contribution in Culr

Dazhi Hou et al., arXiv:1503.00816

Thickness dependence

Hall resistance of spin accumulation AHE:

Experiment: Hall signal in Au

Not only in Culr!

Summary

Mall detection of ppm spin polarization

Summary

Mall detection of ppm spin polarization

Spin accumulation Hall effect is **NOT** anomalous Hall effect

$$\mathbf{j}_{\mathrm{SaHE}} = \frac{\mu_s}{2} \frac{\partial \sigma_{\mathrm{SHE}}}{\partial \varepsilon} \frac{-\widetilde{\mathbf{m}}}{|\widetilde{\mathbf{m}}|} \times \mathbf{E}$$
$$\frac{\partial \sigma_{\mathrm{SHE}}}{\partial \varepsilon} = \frac{\partial \sigma}{\partial \varepsilon} \theta_{\mathrm{SHE}} + \frac{\partial \theta_{\mathrm{SHE}}}{\partial \varepsilon} \sigma$$

Summary

Mall detection of ppm spin polarization

Spin accumulation Hall effect is **NOT** anomalous Hall effect

$$\mathbf{j}_{\mathrm{SaHE}} = \frac{\mu_s}{2} \frac{\partial \sigma_{\mathrm{SHE}}}{\partial \varepsilon} \frac{-\widetilde{\mathbf{m}}}{|\widetilde{\mathbf{m}}|} \times \mathbf{E}$$
$$\frac{\partial \sigma_{\mathrm{SHE}}}{\partial \varepsilon} = \frac{\partial \sigma}{\partial \varepsilon} \theta_{\mathrm{SHE}} + \underbrace{\frac{\partial \theta_{\mathrm{SHE}}}{\partial \varepsilon} \sigma}_{\partial \varepsilon}$$

- Hall detection of the spin accumulation by:
 - spin pumping
 - spin Seebeck

T-response of spin current transport in AFM

spin current in antiferromagnetic insulator

PRI. 113, 097202 (2014) PHYSICAL REVIEW LETTERS 29 AUGUST 2014

Antiferromagnonic Spin Transport from Y3Fe5O12 into NiO

Hailong Wang, Chunhui Du, P. Chris Hammel, and Fengyuan Yang

T. Moriyama et al., Appl. Phys. Lett. 106, 162406 (2015)

spin current in antiferromagnetic insulator

T. Moriyama et al., Appl. Phys. Lett. 106, 162406 (2015)

spin current in antiferromagnetic insulator

T. Moriyama et al., Appl. Phys. Lett. 106, 162406 (2015)

reduced Neel temperature in thin films

T. Ambrose and C. L. Chien, Phys. Rev. Lett. (1996)

reduced Neel temperature in thin films

T. Ambrose and C. L. Chien, Phys. Rev. Lett. (1996)

reduced Neel temperature in thin films

T. Ambrose and C. L. Chien, Phys. Rev. Lett. (1996)

Finite-Size Effects and Uncompensated Magnetization in Thin Antiferromagnetic CoO Layers

T. Ambrose and C. L. Chien

- Finite size effect
- Double check

Thank you!