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Two-dimensional topological insulator 

 System exhibiting a quantum spin-Hall effect 

 2D bulk insulator with topologically protected  edge states 

 Spin is locked to the wave vector of the electron 

 Conductance of the edge state is insensitive to disorder which does 
not break time reversal symmetry 

 
 

Predicted (Bernevig, Hughes, and Zhang, 
2006) and observed (König et al., 2007) in 
CdTe/HgTe/CdTe quantum well structures 
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Bernevig-Hughes-Zhang (BHZ) model 

BHZ, Science 314,1757(2006) 

Square lattice with four basis 
states α on each site i: 
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Fu and Kane, PRB 76, 045302 (2007) 
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“Inverted” band structure 
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Hamiltonian:  



Tight-binding Green’s function technique 

Dyson equation: 

Layer-dependent DOS: 
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Semi-infinite square lattice 
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Layer-dependent 
spectral density: 
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Layer-dependent spectral density  

 Energy dependent oscillatory decay of the edge state into the bulk 
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Oscillatory decay of DOS 
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 Oscillatory decay of the 
edge state into the bulk 



Complex band structure 

For a given energy, there are three types of solutions: 
 Bloch state :               - oscillation 
 Evanescent state:              - decay 
 Complex solution:                   - oscillation and decay 

yik yeϕ ∼
ye κϕ −∼

yik y ye e κϕ −∼

 DOS is superposition of two 
waves with opposite Re(ky): 
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Oscillatory decay of DOS 
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Layer-dependent DOS using 
parameters extracted from the 
complex band structure 
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 Finite width strip within the BHZ tight-binding model 
 Green’s function formalism 
 
 
 Landauer-Büttiker approach 

Electronic transport: model and methods 

1( ) [ ]L RG E E H −= − −Σ −Σ
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Local conductance 

Local current:  

where 

Within linear response 

Local conductance (per spin): 
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0.35FE =

Local conductance for an isolated edge 

 Oscillation in the local conductance 
 Correlation between local conductance and local density of states  
 Explained by the complex band structure 
 T = 1, as expected 

Local conductance LDOS 
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Effect of impurity 
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Perturbation due to impurity: 

Real space Green’s function: 
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 Strong effect on local current distribution 
 No back-scattering: T = 1, as expected 

Impurity 0iE = Impurity iE →∞
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Effect of impurity 

0.35FE =



Impurity 1.25iE = Impurity 0.45iE = −

 Intricate current distributions 
 Current vortex due to impurity 
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Effect of impurity 

0.35FE =



 Current vortex due to internal edge 
 Chirality is determined by propagating mode spin state 
 Counterclockwise  current 

Effect of vacancy 

Vacancy Hollow  
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Narrow width strip 

 For a given spin, two propagating states on the two edges 
 Coupling between the edge states 
 Backscattering due to impurities 
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Oscillatory band gap 

 Energy gap due to coupling between the edge states 
 Oscillatory behavior as a function of strip width  
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Edge states: 

Energy gap: 
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Oscillatory band gap 
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Oscillatory band gap 

 Excellent agreement 

19 



20 

Complex band structure of Bi2Se3 

 Real component of the wave vector in the bulk gap region 

In collaboration with J. Velev (UPR) 

reals bands 
complex bands 

bulk gap 
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 Nearly perfect agreement with the complex band structure parameters 

Oscillatory band gap in Bi2Se3 
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Friedel oscillations: density of states 

 No Friedel oscillations for an isolated edge 
 For a finite strip, LDOS oscillates away from the impurity with no decay 
 Oscillation period depends on the Fermi energy 
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Dyson equation within Born approximation: 

where                         is a local perturbation due to impurity ( ) ( )V x xλδ=

Resulting perturbation in LDOS: 
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Friedel oscillations: model 

Model Hamiltonian:  

Green’s function:  



Friedel oscillations: local conductance 

 Periodically repeated vortices in spin-resolved current distribution 
 No Friedel oscillations in net local conductance 24 

Impurity 

Spin up 

Spin down 

Total 



Resonant scattering 

 Resonant channel: full back-scattering due to 
bound state created by impurity 
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Energy dependent transmission 

 Full suppression of net current 

 Destructive interference of the 
incoming and reflected waves 
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Resonant scattering: antiresonance 

Antiresonances 
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Antiresonance 

0iE =

2∆
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 Two bound states (electron-like and hole-like) 
 Antiresonances in transmission at the bound state energies 
 Decreasing antiresonance width with increasing strip width L 



Scattering problem: 
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Antiresonance: model 
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 Antiresonance in transmission characterized by width 
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 Perfect back scattering due to antiresonance 
 No net local currents  
 Total transmission is zero 
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Antiresonance: local conductance  

Spin up contribution 



Effect of magnetic impurity 

Magnetic impurity Hamiltonian: 

ˆ
2exH m σ∆

= − ⋅


ˆ (sin cos , sin sin , cos )m θ φ θ φ θ=
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2D TI 
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 Breaks time reversal symmetry 
 Expected back-scattering due to mixing of spin channels  
 Effect depends on the impurity magnetic moment angle 
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 Effect on transport spin polarization:  



Spin up Spin down Total 

 Backscattering seen in spin-down channel 
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Magnetic impurity: local conductance  

SP = 0.33 
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Magnetic impurity: local conductance  

Spin up Spin down Total 

SP = 0.93 

 Nearly perfect backscattering 



 Antiresonance in transmission due to magnetic impurity 
at the critical angle of the magnetic moment 33 

Magnetic impurity: angular dependence 

0θ θ=
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Magnetic impurity: local conductance  

SP = 0 SP = 0.98 SP = 0.33 

 Current vertex at the antiresonance conditions 



Summary 

The BHZ model for a 2D topological insulator implemented within 
the tight-binding Green’s function technique reveals: 

 Oscillatory decay of the local conductance away from the TI edge  
 Intricate current distributions and formation of current vertices of 

different chirality around impurities  
 Oscillatory behavior of the edge-state energy gap as a function of  

2D TI width 
 Impurity-driven Friedel oscillations in electron density and spin-

dependent local conductance for sufficiently narrow TI strips   
 Resonant back scattering and antiresonances in transmission for 

finite-size impurity system 
 Back scattering produced by magnetic impurity and resonant-type 

transmission as a function of magnetic moment angle  
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