Quantum Hall effects at oxide heterointerfaces

Yusuke Kozuka

Department of Applied Physics University of Tokyo

Quantum Hall effect 🗲

Generality

•GaAs/AlGaAs

•Si MOSFET, Si/SiGe

- InSb, CdTe
- •Graphene
- Topological insulator HgTe, (Bi,Sb)₂Te₃

•ZnO

Superconductivity

Diversity

- •Metal (Al, Nb, In)
- •Alloy (NbTi, Nb₃Sn)
- •High T_{c} ((La,Sr)₂CuO₄, YBCO)
- Iron-based (*Ln*FeAs(O,F), FeSe)
- •Organic (Cs_3C_{60})

Collaborators

Joseph Falson Masashi Kawasaki

Denis Maryenko

Atsushi Tuskazaki

Benedikt Friess Ding Zhang Jurgen Smet

University of Tokyo

RIKEN

Tohoku University

Max-Planck Institute

(z = x + iy: complex coordinate)

Fractional quantum Hall effect

A. M. Chang et al., Phys. Rev. Lett. 53, 997 (1984)

Even-denominator fractional quantum Hall effect

Fragile and competing with other phases

High mobility electrons in oxides

Comparison of materials parameters 7

Polarization-induced 2DEG

Molecular beam epitaxy

Sources Zn:7N Mg:6N

ZnO single crystal substrate

Tokyo Denpa

K. Maeda et al., Semicond. Sci. Technol. 20, S49 (2005)

Pure Ozone

Meidensha Co.

High-mobility electrons in ZnO heterostructures

Quantum Hall Effects in ZnO

Even-denominator fractional QHE in ZnO ¹³ GaAs

R. Willet et al., Phys. Rev. Lett. 59, 1776 (1987)

Large electron correlation Spin degree of freedom

Electron spin resonance in integer QHE ¹⁴

ESR in even-integer QHE

Detecting spin susceptibility *g***m**

Spin transition in integer QHE

Vanishing v = 7/2 at high angles

Spin susceptibility of composite Fermion²²

Spin susceptibility of composite Fermion ²³

Conclusion

- Electron mobility ~ 1,200,000 cm²/Vs
- Even denominator fractional quantum Hall state v = 3/2
- Strong electron correlation
- Large spin polarization
- Landau level mixing

Qualitatively different composite Fermion properties