

LUDWIG-MAXIMILIANS-

UNIVERSITÄT MÜNCHEN

New effects in spintronics derived from the symmetry of response functions

Hubert Ebert, Diemo Ködderitzsch, Marten Seemann, Kristina Chadova, and Sebastian Wimmer

Ludwig-Maximilians-Universität München, Department Chemie, Physikalische Chemie, Butenandtstrasse 5-13, 81377 München, Germany

Outline

- Linear response formalism & group theory
- Application to electrical conductivity
- Application to spin-polarized conductivity
- Application to spin-orbit torques
- Summary and outlook

Response in **B** caused by coupling to perturbation in **A**

$$\tau_{\hat{B}_{i}\hat{A}_{j}}(\omega,\vec{H}) = \int_{0}^{\infty} dt \, e^{-i\omega t} \int_{0}^{\beta} d\lambda \left\langle \rho(\vec{H})\hat{A}_{j}\hat{B}_{i}(t+i\hbar\lambda;\vec{H}) \right\rangle$$

Example – electric current

$$\tau_{\hat{j}\hat{j}}(\omega) = \int_0^\infty dt \, e^{-i\omega t} \int_0^\beta d\lambda \, \mathrm{Tr}\left(\rho_0 \, \hat{j} \, \hat{j}(t+i\hbar\lambda)\right)$$

$$au_{oldsymbol{j}oldsymbol{j}} = \sigma = \left(egin{array}{ccc} \sigma_{xx} & \sigma_{xy} & \sigma_{xz} \ \sigma_{yx} & \sigma_{yy} & \sigma_{yz} \ \sigma_{zx} & \sigma_{zy} & \sigma_{zz} \end{array}
ight)$$

- symmetric part: longitudinal charge conductivity Anisotropic Magnetoresistance (AMR)
- antisymmetric part: transverse, anomalous Hall effect (AHE)

Response in **B** caused by coupling to perturbation in **A**

$$\tau_{\hat{B}_{i}\hat{A}_{j}}(\omega,\vec{H}) = \int_{0}^{\infty} dt \, e^{-i\omega t} \int_{0}^{\beta} d\lambda \left\langle \rho(\vec{H})\hat{A}_{j}\hat{B}_{i}(t+i\hbar\lambda;\vec{H}) \right\rangle$$

- Make use of transformation properties of involved operators
- Account for symmetry operations in space as well as space and time

space	unitary operations	u
space + time	anti-unitary operations with time reversal T	a = T v

	non-magnetic	magnetic
space groups	230	1651
point groups	32	122
Laue groups	12	37

symmetry determination: *FINDSYM* ISOTROPY Software Suite, iso.byu.edu. H. T. Stokes & D. M. Hatch, J. Appl. Cryst. 38, 237 (2005)

$$\sigma_{ij} = \tau_{\hat{j}_i \hat{j}_j}(\omega, \vec{H}) = \int_0^\infty dt \ e^{-i\omega t} \int_0^\beta d\lambda \left(\rho(\vec{H}) \hat{j}_j \hat{j}_i (t + i\hbar\lambda; \vec{H}) \right)$$

for unitary operators *u*:

$$\sigma_{ij} = \sum_{kl} \sigma_{kl} D(P_R)_{ki} D(P_R)_{lj}$$

for anti-unitary operators a:

$$\sigma_{ij} = \sum_{kl} \sigma_{lk} D(P_R)^*_{ki} D(P_R)^*_{lj}$$

Pseudoalgorithm

- determine symmetry of system
- loop over symmetry operations
 - set up system of linear eqs. in elements $\{\sigma_{ij}\}$
- solution gives restrictions
 - element is linear combination of other elements
 - element is its negative
 - \rightarrow element is zero

Only the magnetic Laue group has to be considered

same transformation behavior for thermal transport

same tensor shapes

W. H. Kleiner, Phys. Rev. 142, 318 (1966)

Only the magnetic Laue group has to be considered

Isotropic conductivity

Results obtained by analytic computation using computer algebra system (CAS)

Non-magnetic materials

Magnetic materials

magnetic Laue group	$\underline{ au}'$	<u>\sigma</u>	magnetic Laue group	$\underline{\tau}'$	<u> </u>
ī1'	$\begin{pmatrix} \tau_{xx} & \tau_{yx} & \tau_{zx} \\ \tau_{xy} & \tau_{yy} & \tau_{zy} \\ \tau_{xz} & \tau_{yz} & \tau_{zz} \end{pmatrix}$	$\begin{pmatrix} \sigma_{xx} & \sigma_{xy} & \sigma_{xz} \\ \sigma_{xy} & \sigma_{yy} & \sigma_{yz} \\ \sigma_{xz} & \sigma_{yz} & \sigma_{zz} \end{pmatrix}$	2'/m'	$\begin{pmatrix} \tau_{xx} & -\tau_{yx} & \tau_{zx} \\ -\tau_{xy} & \tau_{yy} & -\tau_{zy} \\ \tau_{xz} & -\tau_{yz} & \tau_{zz} \end{pmatrix}$	$\begin{pmatrix} \sigma_{xx} & \sigma_{xy} & \sigma_{xz} \\ -\sigma_{xy} & \sigma_{yy} & \sigma_{yz} \\ \sigma_{xz} & -\sigma_{yz} & \sigma_{zz} \end{pmatrix}$
2/m1'	$\begin{pmatrix} \tau_{xx} & 0 & \tau_{zx} \\ 0 & \tau_{yy} & 0 \\ \tau_{xz} & 0 & \tau_{zz} \end{pmatrix}$	$ \begin{pmatrix} \sigma_{xx} & 0 & \sigma_{xz} \\ 0 & \sigma_{yy} & 0 \\ \sigma_{xz} & 0 & \sigma_{zz} \end{pmatrix} $	m'm'm	$\begin{pmatrix} \tau_{xx} & -\tau_{yx} & 0\\ -\tau_{xy} & \tau_{yy} & 0\\ 0 & 0 & \tau_{zz} \end{pmatrix}$	$\begin{pmatrix} \sigma_{xx} & \sigma_{xy} & 0\\ -\sigma_{xy} & \sigma_{yy} & 0\\ 0 & 0 & \sigma_{zz} \end{pmatrix}$
mmm1'	$\begin{pmatrix} \tau_{xx} & 0 & 0 \\ 0 & \tau_{yy} & 0 \\ 0 & 0 & \tau_{yy} \end{pmatrix}$	$\begin{pmatrix} \sigma_{xx} & 0 & 0 \\ 0 & \sigma_{yy} & 0 \\ 0 & 0 & \sigma \end{pmatrix}$	4'/m	$\begin{pmatrix} \tau_{yy} & -\tau_{xy} & 0\\ -\tau_{yx} & \tau_{xx} & 0\\ 0 & 0 & \tau_{zz} \end{pmatrix}$	$\begin{pmatrix} \sigma_{xx} & 0 & 0\\ 0 & \sigma_{xx} & 0\\ 0 & 0 & \sigma_{zz} \end{pmatrix}$
$\bar{3}1', 4/m1', 6/m1'$	$\begin{pmatrix} \tau_{xx} & -\tau_{xy} & 0 \\ \tau_{xy} & \tau_{xx} & 0 \end{pmatrix}$	$ \begin{pmatrix} \sigma_{xx} & 0 & 0 \\ \sigma_{xx} & 0 & 0 \\ 0 & \sigma_{xx} & 0 \end{pmatrix} $	4'/mm'm	$\begin{pmatrix} \tau_{xx} & -\tau_{xy} & 0\\ -\tau_{xy} & \tau_{xx} & 0\\ 0 & 0 & \tau_{zz} \end{pmatrix}$	$\begin{pmatrix} \sigma_{xx} & 0 & 0\\ 0 & \sigma_{xx} & 0\\ 0 & 0 & \sigma_{zz} \end{pmatrix}$
31m1', 3m11', 4/mmm1', 6/mmm1'	$\begin{pmatrix} 0 & 0 & \tau_{zz} \end{pmatrix}$ $\begin{pmatrix} \tau_{xx} & 0 & 0 \\ 0 & \tau_{xx} & 0 \end{pmatrix}$	$ \begin{pmatrix} 0 & 0 & \sigma_{zz} \end{pmatrix} $ $ \begin{pmatrix} \sigma_{xx} & 0 & 0 \\ 0 & \sigma_{xx} & 0 \end{pmatrix} $	4'/mmm'	$\begin{pmatrix} \tau_{yy} & 0 & 0\\ 0 & \tau_{xx} & 0\\ 0 & 0 & \tau_{zz} \end{pmatrix}$	$\begin{pmatrix} \sigma_{xx} & 0 & 0\\ 0 & \sigma_{xx} & 0\\ 0 & 0 & \sigma_{zz} \end{pmatrix}$
	$ \begin{pmatrix} 0 & 1xx & 0\\ 0 & 0 & \tau_{zz} \end{pmatrix} $ $ \begin{pmatrix} \tau_{xx} & 0 & 0\\ 0 & 0 \end{pmatrix} $	$ \begin{pmatrix} \sigma & \sigma_{xx} & \sigma_{zz} \\ 0 & 0 & \sigma_{zz} \end{pmatrix} $ $ \begin{pmatrix} \sigma_{xx} & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} $	$\bar{3}1m', \bar{3}m'1, 4/mm'm', 6/mm'm'$	$\begin{pmatrix} \tau_{xx} & \tau_{xy} & 0\\ -\tau_{xy} & \tau_{xx} & 0\\ 0 & 0 & \tau_{zz} \end{pmatrix}$	$\begin{pmatrix} \sigma_{xx} & \sigma_{xy} & 0\\ -\sigma_{xy} & \sigma_{xx} & 0\\ 0 & 0 & \sigma_{zz} \end{pmatrix}$
m31', m3m1'	$ \left(\begin{array}{ccc} 0 & \tau_{xx} & 0\\ 0 & 0 & \tau_{xx} \end{array}\right) $	$ \begin{pmatrix} 0 & \sigma_{xx} & 0 \\ 0 & 0 & \sigma_{xx} \end{pmatrix} $	6'/m'	$\begin{pmatrix} \tau_{xx} & -\tau_{xy} & 0\\ \tau_{xy} & \tau_{xx} & 0\\ 0 & 0 & \tau_{zz} \end{pmatrix}$	$\begin{pmatrix} \sigma_{xx} & 0 & 0\\ 0 & \sigma_{xx} & 0\\ 0 & 0 & \sigma_{zz} \end{pmatrix}$
Thermo-electrical			$6^{\prime}/m^{\prime}m^{\prime}m,6^{\prime}/m^{\prime}mm^{\prime}$	$\begin{pmatrix} \tau_{xx} & 0 & 0 \\ 0 & \tau_{xx} & 0 \\ 0 & 0 & \tau_{zz} \end{pmatrix}$	$ \begin{pmatrix} \sigma_{xx} & 0 & 0 \\ 0 & \sigma_{xx} & 0 \\ 0 & 0 & \sigma_{zz} \end{pmatrix} $
Electrical conductivity tensor			$m\bar{3}m'$	$\begin{pmatrix} \tau_{xx} & 0 & 0\\ 0 & \tau_{xx} & 0\\ 0 & 0 & \tau_{xx} \end{pmatrix}$	$\begin{pmatrix} \sigma_{xx} & 0 & 0\\ 0 & \sigma_{xx} & 0\\ 0 & 0 & \sigma_{xx} \end{pmatrix}$

class a) contains time reversal $\ensuremath{\mathcal{T}}$

class c) contains combined operations a=v T

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

- $Mn_{3}Ir a$ prototype non-collinear antiferromagnet
 - Cu₃Au structure
 - moments in (111) plane (Kagome lattice)
 - magnetic space group: R3m'

Prediction of anomalous Hall effect (AHE) and magneto-optical Kerr effect (MOKE)

based on analysis of electronic structure

Chen, Niu, and MacDonald, PRL **112**, 017205 (2014)

• Natural consequence of Kleiner's tables for the shape of the conductivity tensor

Kleiner, PR 142, 318 (1966)

LUDWIG-

Electrical conductivity tensor

$$\left(egin{array}{cccc} \sigma_{xx} & \sigma_{xy} & 0 \ -\sigma_{xy} & \sigma_{xx} & 0 \ 0 & 0 & \sigma_{zz} \end{array}
ight)$$

numerical work based on Kubo-Středa equation

z-direction along [111]

$$egin{aligned} \sigma_{\mu
u} &= rac{\hbar}{4\pi V} ext{Tr} \Big\langle \hat{J}_{\mu} (G^+ - G^-) \hat{j}_{
u} G^- - \hat{J}_{\mu} G^+ \hat{j}_{
u} (G^+ - G^-) \Big
angle_{G}^+ \ &+ rac{e}{4\pi i V} ext{Tr} \Big\langle (G^+ - G^-) (\hat{r}_{\mu} \hat{J}_{
u} - \hat{r}_{
u} \hat{J}_{\mu}) \Big
angle_{C}^+ \end{aligned}$$

confirms tensor shape

Smrčka and Středa, JPC 10, 2153 (1977) Lowitzer et al., PRL 105, 266604 (2010)

Anomalous Hall conductivity

275 (Ω cm)⁻¹ this work **218** (Ω cm)⁻¹ Chen *et al.* (2014)

comparable in size to Fe, Co, and Ni

- Space group P6₃/mmc (194)
 - Mn atoms couple antiferromagnetically on Kagome lattices (stacked along [0001])
 - magnetic moments in {0001}

various triangular configurations discussed
 Zhang *et al.* JPCM **25**, 206006 (2013), Kübler and Felser, EPL **108**, 67001 (2014)

- Excluded for AFM1

- Electrical conductivity
 - predicted tensor shapes (MSGs determined using *FINDSYM*)

$$\begin{pmatrix} \sigma_{xx} & 0 & \sigma_{xz} \\ 0 & \sigma_{yy} & 0 \\ -\sigma_{xz} & 0 & \sigma_{zz} \end{pmatrix} \begin{pmatrix} \sigma_{xx} & 0 & 0 \\ 0 & \sigma_{xx} & 0 \\ 0 & 0 & \sigma_{zz} \end{pmatrix} \begin{pmatrix} \sigma_{xx} & \sigma_{xy} & \sigma_{xz} \\ \sigma_{xy} & \sigma_{yy} & \sigma_{yz} \\ -\sigma_{xz} & -\sigma_{yz} & \sigma_{zz} \end{pmatrix} \begin{pmatrix} \sigma_{xx} & 0 & \sigma_{xz} \\ 0 & \sigma_{yy} & 0 \\ -\sigma_{xz} & 0 & \sigma_{zz} \end{pmatrix}$$

$$\begin{array}{c} \textbf{AFM1} & \textbf{AFM2} & \textbf{AFM3} & \textbf{AFM4} \\ \textbf{MSG Am'm'2} & \textbf{P-6'2c'} & \textbf{Pm'} & Am'm'2 \\ \textbf{MLG m'm'm} & \textbf{G'/m'mm'} & \textbf{2'/m'} & \textbf{m'm'm} \end{array}$$

- numerical results confirm prediction in all cases
- Comparison to results obtained by Kübler & Felser [1]
- Discrepancies for AFM1 (no AHE) & AFM4 (2 different AHCs)
- *AFM2* not considered in [1]
- Agreement for AFM3

[1] Kübler & Felser, EPL 108, 67001 (2014)

LUDWIG-
MAXIMILIANS-
UNIVERSITÄT
MÜNCHENMn_Ir – optical conductivity and Kerr angle

• same tensor shape as for bcc-Fe, comparable in magnitude

Wimmer, et al., unpublished (2015)

• One-electron approximation to *Fermi's Golden Rule*

X-ray absorption

 $\mu^i_{{
m q}\lambda}(\omega) \propto \sum\limits_f |\langle \Psi_f \, | \, X_{{
m q}\lambda} \, | \, \Psi_i
angle|^2 \; \delta(E_f - E_i - \hbar \omega)$

Electron-photon interaction operator

$$X_{q\lambda}(\mathbf{r}) = -\frac{1}{c} \underbrace{\mathbf{j}_{el}}_{\mathbf{q}\lambda}(\mathbf{r}) = e \,\alpha \cdot \hat{\varepsilon}_{\lambda} \,\mathbf{A} \, e^{i\mathbf{q}\mathbf{r}}$$

- electric current density operato
- Absorption coefficient in terms of Green function

 $\mu_{\mathrm{q}\lambda}(\omega) \propto \sum_i \langle \Psi_i \, | \, X^\dagger_{\mathrm{q}\lambda} \, \Im G^+(E_i + \hbar \omega) \, X_{\mathrm{q}\lambda} \, | \, \Psi_i \,
angle \, heta(E_i + \hbar \omega - E_F)$

- Relation to transport effects
 - XMCD $(\mu_{q+} \mu_{q-})$ circular dichroism \longrightarrow AHE • XMLD $(\mu_{q\overline{\lambda}} - \mu_{q'\overline{\lambda}})$ linear dichroism \longleftarrow AMR
- Construction of spectra as sum of site-resolved absorption coefficients
 - wavevectors q along high symmetry directions \rightarrow connection to σ

- spectra by superposition of site-resolved abs. coeffs. $\mu_{\vec{a}\lambda}^n(\omega)$
- incidence \vec{q} : [111] vs. direction of \vec{m}_n (polar geometry)
 - same total absorption
 - in **both** cases XMCD (larger for polar geometry)

Wimmer, et al., unpublished (2015)

Wimmer, et al., unpublished (2015)

energy

$$\tau_{(\mathcal{T}_{k}\hat{j}_{i})\hat{j}_{j}}(\omega,\vec{H}) = \int_{0}^{\infty} dt \ e^{-i\omega t} \int_{0}^{\beta} d\lambda \left(\rho(\vec{H})\hat{j}_{j}\mathcal{T}_{k}\hat{j}_{i}(t+i\hbar\lambda;\vec{H})\right)$$

$$\hat{j}_j = -|e| c \, lpha_j$$
 \checkmark Dirac matrix

Using a relativistic spin polarization operator [1,2,3]: $\mathcal{T}_k = \beta \Sigma_k - \frac{\gamma_5 \Pi_k}{2000}$

for unitary operators *u*:

$$\sigma_{ij}^k = \sum_{lmn} D(P_R)_{li} D(P_R)_{mj} D(P_R)_{nk} \sigma_{lm}^n$$

for anti-unitary operators a:

$$\sigma_{ij}^k = -\sum_{lmn} D(P_R)_{li} D(P_R)_{mj} D(P_R)_{nk} \sigma_{lm}^{\prime n}$$

Only the magnetic Laue group has to be considered

Spin polarized conductivity tensor

[1] V. Bargmann, E. P. Wigner, Proc. Natl. Acad. Sci. U.S.A. **34**, 211 (1948)

- [2] A. Vernes, B.L. Györffy, P. Weinberger, Phys. Rev. B 76, 012408 (2007)
- [3] S. Lowitzer, Ködderitzsch, H. Ebert, Phys. Rev. B 82, 140402 (2010)

Only the magnetic Laue group has to be considered

 \vec{E}

Spin-Hall effect in paramagnet and ferromagnet

(no need for two-current-model)

Results obtained by analytic computation using computer algebra system (CAS)

Non-magnetic materials

magnetic Laue group	$\underline{\sigma}^x$	$\underline{\sigma}^y$	$\underline{\sigma}^{z}$	
Ī1′	$\begin{pmatrix} \sigma^x_{xx} & \sigma^x_{xy} & \sigma^x_{xz} \\ \sigma^x_{yx} & \sigma^x_{yy} & \sigma^x_{yz} \\ \sigma^x_{zx} & \sigma^x_{zy} & \sigma^x_{zz} \end{pmatrix}$	$\begin{pmatrix} \sigma_{xx}^y & \sigma_{xy}^y & \sigma_{xz}^y \\ \sigma_{yx}^y & \sigma_{yy}^y & \sigma_{yz}^y \\ \sigma_{zx}^y & \sigma_{zy}^y & \sigma_{zz}^y \end{pmatrix}$	$\begin{pmatrix} \sigma_{xx}^z & \sigma_{xy}^z & \sigma_{xz}^z \\ \sigma_{yx}^z & \sigma_{yy}^z & \sigma_{yz}^z \\ \sigma_{zx}^z & \sigma_{zy}^z & \sigma_{zz}^z \end{pmatrix}$	
2/m1'	$\begin{pmatrix} 0 & \sigma_{xy}^x & 0 \\ \sigma_{yx}^x & 0 & \sigma_{yz}^x \\ 0 & \sigma_{zy}^x & 0 \end{pmatrix}$	$\begin{pmatrix} \sigma_{xx}^y & 0 & \sigma_{xz}^y \\ 0 & \sigma_{yy}^y & 0 \\ \sigma_{zx}^y & 0 & \sigma_{zz}^y \end{pmatrix}$	$\begin{pmatrix} 0 & \sigma_{xy}^{z} & 0 \\ \sigma_{yx}^{z} & 0 & \sigma_{yz}^{z} \\ 0 & \sigma_{zy}^{z} & 0 \end{pmatrix}$	
mmm1'	$\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & \sigma_{yz}^x \\ 0 & \sigma_{zy}^x & 0 \end{pmatrix}$	$\begin{pmatrix} 0 & 0 & \sigma_{xz}^y \\ 0 & 0 & 0 \\ \sigma_{zx}^y & 0 & 0 \end{pmatrix}$	$\begin{pmatrix} 0 & \sigma_{xy}^z & 0 \\ \sigma_{yx}^z & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$	
4/m1',6/m1'	$\begin{pmatrix} 0 & 0 & \sigma_{xz}^x \\ 0 & 0 & -\sigma_{xz}^y \\ \sigma_{zx}^x & -\sigma_{zx}^y & 0 \end{pmatrix}$	$\begin{pmatrix} 0 & 0 & \sigma_{xz}^y \\ 0 & 0 & \sigma_{xz}^x \\ \sigma_{zx}^y & \sigma_{zx}^x & 0 \end{pmatrix}$	$\begin{pmatrix} \sigma_{xx}^{z} & \sigma_{xy}^{z} & 0 \\ -\sigma_{xy}^{z} & \sigma_{xx}^{z} & 0 \\ 0 & 0 & \sigma_{zz}^{z} \end{pmatrix}$	
4/mmm1', 6/mmm1'	$\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -\sigma_{xz}^y \\ 0 & -\sigma_{zx}^y & 0 \end{pmatrix}$	$\begin{pmatrix} 0 & 0 & \sigma_{xz}^y \\ 0 & 0 & 0 \\ \sigma_{zx}^y & 0 & 0 \end{pmatrix}$	$\begin{pmatrix} 0 & \sigma_{xy}^z & 0 \\ -\sigma_{xy}^z & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$	
$\bar{3}1'$	$\begin{pmatrix} \sigma_{xx}^x & \sigma_{xx}^y & \sigma_{xz}^x \\ \sigma_{xx}^y & -\sigma_{xx}^x & -\sigma_{xz}^y \\ \sigma_{zx}^x & -\sigma_{zx}^y & 0 \end{pmatrix}$	$\begin{pmatrix} \sigma_{xx}^y & -\sigma_{xx}^x & \sigma_{xz}^y \\ -\sigma_{xx}^x & -\sigma_{xx}^y & \sigma_{xz}^x \\ \sigma_{zx}^y & \sigma_{zx}^x & 0 \end{pmatrix}$	$\begin{pmatrix} \sigma_{xx}^{z} & \sigma_{xy}^{z} & 0 \\ -\sigma_{xy}^{z} & \sigma_{xx}^{z} & 0 \\ 0 & 0 & \sigma_{zz}^{z} \end{pmatrix}$	
$\bar{3}1m1'$	$\begin{pmatrix} \sigma^x_{xx} & 0 & 0\\ 0 & -\sigma^x_{xx} & -\sigma^y_{xz}\\ 0 & -\sigma^y_{zx} & 0 \end{pmatrix}$	$\begin{pmatrix} 0 & -\sigma^x_{xx} & \sigma^y_{xz} \\ -\sigma^x_{xx} & 0 & 0 \\ \sigma^y_{zx} & 0 & 0 \end{pmatrix}$	$\begin{pmatrix} 0 & \sigma_{xy}^z & 0 \\ -\sigma_{xy}^z & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$	
$\bar{3}m11'$	$\begin{pmatrix} 0 & \sigma_{xx}^y & 0 \\ \sigma_{xx}^y & 0 & -\sigma_{xz}^y \\ 0 & -\sigma_{zx}^y & 0 \end{pmatrix}$	$\begin{pmatrix} \sigma_{xx}^y & 0 & \sigma_{xz}^y \\ 0 & -\sigma_{xx}^y & 0 \\ \sigma_{zx}^y & 0 & 0 \end{pmatrix}$	$\begin{pmatrix} 0 & \sigma_{xy}^z & 0 \\ -\sigma_{xy}^z & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$	
$m\bar{3}1'$	$\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & \sigma^z_{xy} \\ 0 & \sigma^y_{xz} & 0 \end{pmatrix}$	$\begin{pmatrix} 0 & 0 & \sigma_{xz}^y \\ 0 & 0 & 0 \\ \sigma_{xy}^z & 0 & 0 \end{pmatrix}$	$\begin{pmatrix} 0 & \sigma_{xy}^z & 0 \\ \sigma_{xz}^y & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$	
$m\bar{3}m1'$	$\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & \sigma_{xy}^z \\ 0 & -\sigma_{xy}^z & 0 \end{pmatrix}$	$\begin{pmatrix} 0 & 0 & -\sigma_{xy}^z \\ 0 & 0 & 0 \\ \sigma_{xy}^z & 0 & 0 \end{pmatrix}$	$\begin{pmatrix} 0 & \sigma_{xy}^z & 0 \\ -\sigma_{xy}^z & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$	
ass a) contains time reversal T				

Magnetic materials

magnetic Laue group	$\underline{\sigma}^x$	$\underline{\sigma}^y$	$\underline{\sigma}^{z}$
2'/m'	$\begin{pmatrix} \sigma^x_{xx} & \sigma^x_{xy} & \sigma^x_{xz} \\ \sigma^x_{yx} & \sigma^x_{yy} & \sigma^x_{yz} \\ \sigma^x_{zx} & \sigma^x_{zy} & \sigma^x_{zz} \end{pmatrix}$	$\begin{pmatrix} \sigma_{xx}^y & \sigma_{xy}^y & \sigma_{xz}^y \\ \sigma_{yx}^y & \sigma_{yy}^y & \sigma_{yz}^y \\ \sigma_{zx}^y & \sigma_{zy}^y & \sigma_{zz}^y \end{pmatrix}$	$\begin{pmatrix} \sigma^z_{xx} & \sigma^z_{xy} & \sigma^z_{xz} \\ \sigma^z_{yx} & \sigma^z_{yy} & \sigma^z_{yz} \\ \sigma^z_{zx} & \sigma^z_{zy} & \sigma^z_{zz} \end{pmatrix}$
$4^{\prime}/m,m^{\prime}m^{\prime}m$	$egin{pmatrix} 0&0&\sigma^x_{xz}\ 0&0&\sigma^x_{yz}\ \sigma^x_{zx}&\sigma^x_{zy}&0 \end{pmatrix}$	$egin{pmatrix} 0 & 0 & \sigma^y_{xz} \ 0 & 0 & \sigma^y_{yz} \ \sigma^y_{zx} & \sigma^y_{zy} & 0 \end{pmatrix}$	$\begin{pmatrix} \sigma^z_{xx} & \sigma^z_{xy} & 0 \\ \sigma^z_{yx} & \sigma^z_{yy} & 0 \\ 0 & 0 & \sigma^z_{zz} \end{pmatrix}$
4'/mm'm	$egin{pmatrix} 0 & 0 & \sigma^x_{xz} \ 0 & 0 & -\sigma^y_{xz} \ \sigma^x_{zx} & -\sigma^y_{zx} & 0 \end{pmatrix}$	$\begin{pmatrix} 0 & 0 & \sigma_{xz}^y \\ 0 & 0 & -\sigma_{xz}^x \\ \sigma_{zx}^y & -\sigma_{zx}^x & 0 \end{pmatrix}$	$\begin{pmatrix} \sigma_{xx}^z & \sigma_{xy}^z & 0 \ -\sigma_{xy}^z & -\sigma_{xx}^z & 0 \ 0 & 0 & 0 \end{pmatrix}$
4'/mmm'	$\begin{pmatrix} 0 & 0 & 0 \ 0 & 0 & \sigma^x_{yz} \ 0 & \sigma^x_{zy} & 0 \end{pmatrix}$	$egin{pmatrix} 0 & 0 & \sigma^y_{xz} \ 0 & 0 & 0 \ \sigma^y_{zx} & 0 & 0 \end{pmatrix}$	$\begin{pmatrix} 0 & \sigma^z_{xy} & 0 \\ \sigma^z_{yx} & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$
4/mm'm', 6/mm'm'	$egin{pmatrix} 0 & 0 & \sigma^x_{xz} \ 0 & 0 & -\sigma^y_{xz} \ \sigma^x_{zx} & -\sigma^y_{zx} & 0 \end{pmatrix}$	$egin{pmatrix} 0 & 0 & \sigma^y_{xz} \ 0 & 0 & \sigma^x_{xz} \ \sigma^y_{zx} & \sigma^x_{zx} & 0 \end{pmatrix}$	$\begin{pmatrix} \sigma_{xx}^{z} & \sigma_{xy}^{z} & 0 \\ -\sigma_{xy}^{z} & \sigma_{xx}^{z} & 0 \\ 0 & 0 & \sigma_{zz}^{z} \end{pmatrix}$
$ar{3}1m',ar{3}m'1,6'/m'$	$\begin{pmatrix} \sigma^x_{xx} & \sigma^y_{xx} & \sigma^x_{xz} \\ \sigma^y_{xx} & -\sigma^x_{xx} & -\sigma^y_{xz} \\ \sigma^x_{zx} & -\sigma^y_{zx} & 0 \end{pmatrix}$	$\begin{pmatrix} \sigma^y_{xx} & -\sigma^x_{xx} & \sigma^y_{xz} \ -\sigma^x_{xx} & -\sigma^y_{xx} & \sigma^x_{xz} \ \sigma^y_{zx} & \sigma^x_{zx} & 0 \end{pmatrix}$	$\begin{pmatrix} \sigma_{xx}^z & \sigma_{xy}^z & 0 \\ -\sigma_{xy}^z & \sigma_{xx}^z & 0 \\ 0 & 0 & \sigma_{zz}^z \end{pmatrix}$
6'/m'm'm	$egin{pmatrix} \sigma^x_{xx} & 0 & 0 \ 0 & -\sigma^x_{xx} & -\sigma^y_{xz} \ 0 & -\sigma^y_{zx} & 0 \end{pmatrix}$	$egin{pmatrix} 0&-\sigma^x_{xx}&\sigma^y_{xz}\ -\sigma^x_{xx}&0&0\ \sigma^y_{zx}&0&0 \end{pmatrix}$	$\begin{pmatrix} 0 & \sigma^z_{xy} & 0 \ -\sigma^z_{xy} & 0 & 0 \ 0 & 0 & 0 \end{pmatrix}$
6'/m'mm'	$egin{pmatrix} 0&\sigma^y_{xx}&0\\sigma^y_{xx}&0&-\sigma^y_{xz}\0&-\sigma^y_{zx}&0 \end{pmatrix}$	$egin{pmatrix} \sigma^y_{xx} & 0 & \sigma^y_{xz} \ 0 & -\sigma^y_{xx} & 0 \ \sigma^y_{zx} & 0 & 0 \end{pmatrix}$	$egin{pmatrix} 0 & \sigma^z_{xy} & 0 \ -\sigma^z_{xy} & 0 & 0 \ 0 & 0 & 0 \end{pmatrix}$
$mar{3}m'$	$\begin{pmatrix} 0 & 0 & 0 \ 0 & 0 & \sigma^z_{xy} \ 0 & \sigma^y_{xz} & 0 \end{pmatrix}$	$egin{pmatrix} 0 & 0 & \sigma^y_{xz} \ 0 & 0 & 0 \ \sigma^z_{xy} & 0 & 0 \end{pmatrix}$	$egin{pmatrix} 0 & \sigma^z_{xy} & 0 \ \sigma^y_{xz} & 0 & 0 \ 0 & 0 & 0 \end{pmatrix}$

class c) contains combined operations a=v T

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

magnetic Laue group	<u></u>	$\underline{\sigma}^{x}$	$\underline{\sigma}^y$	$\underline{\sigma}^{z}$
m3̄m1′ e.g.: Au	$\begin{pmatrix} \sigma_{xx} & 0 & 0 \\ 0 & \sigma_{xx} & 0 \\ 0 & 0 & \sigma_{xx} \end{pmatrix}$	$\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & \sigma_{yz}^{x} \\ 0 - \sigma_{yz}^{x} & 0 \end{pmatrix}$	$\begin{pmatrix} 0 & 0 - \sigma_{yz}^{x} \\ 0 & 0 & 0 \\ \sigma_{yz}^{x} & 0 & 0 \end{pmatrix}$	$\begin{pmatrix} 0 & \sigma_{yz}^x & 0 \\ -\sigma_{yz}^x & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$
4/mm'm' e.g.: FM bcc Fe	$\begin{pmatrix} \sigma_{xx} & \sigma_{xy} & 0\\ -\sigma_{xy} & \sigma_{xx} & 0\\ 0 & 0 & \sigma_{zz} \end{pmatrix}$	$\begin{pmatrix} 0 & 0 & \sigma_{xz}^x \\ 0 & 0 & \sigma_{yz}^x \\ \sigma_{zx}^x & \sigma_{zy}^x & 0 \end{pmatrix}$	$\begin{pmatrix} 0 & 0 & -\sigma_{yz}^x \\ 0 & 0 & \sigma_{xz}^x \\ -\sigma_{zy}^x & \sigma_{zx}^x & 0 \end{pmatrix}$	$\begin{pmatrix} \sigma_{xx}^z & \sigma_{xy}^z & 0\\ -\sigma_{xy}^z & \sigma_{xx}^z & 0\\ 0 & 0 & \sigma_{zz}^z \end{pmatrix}$
4/m1'e.g.: Au ₄ Sc	$\begin{pmatrix} \sigma_{xx} & 0 & 0 \\ 0 & \sigma_{xx} & 0 \\ 0 & 0 & \sigma_{zz} \end{pmatrix}$	$\begin{pmatrix} 0 & 0 & \sigma_{xz}^x \\ 0 & 0 & \sigma_{yz}^x \\ \sigma_{zx}^x & \sigma_{zy}^x & 0 \end{pmatrix}$	$\begin{pmatrix} 0 & 0 & -\sigma_{yz}^x \\ 0 & 0 & \sigma_{xz}^x \\ -\sigma_{zy}^x & \sigma_{zx}^x & 0 \end{pmatrix}$	$\begin{pmatrix} \sigma_{xx}^z & \sigma_{xy}^z & 0\\ -\sigma_{xy}^z & \sigma_{xx}^z & 0\\ 0 & 0 & \sigma_{zz}^z \end{pmatrix}$
2/m1'e.g.: Pt ₃ Ge	$\begin{pmatrix} \sigma_{xx} \sigma_{xy} 0 \\ \sigma_{xy} \sigma_{yy} 0 \\ 0 0 \sigma_{zz} \end{pmatrix}$	$\begin{pmatrix} 0 & 0 & \sigma_{xz}^x \\ 0 & 0 & \sigma_{yz}^x \\ \sigma_{zx}^x & \sigma_{zy}^x & 0 \end{pmatrix}$	$\begin{pmatrix} 0 & 0 & \sigma_{xz}^y \\ 0 & 0 & \sigma_{yz}^y \\ \sigma_{zx}^y & \sigma_{zy}^y & 0 \end{pmatrix}$	$\begin{pmatrix} \sigma_{xx}^z \sigma_{xy}^z 0 \\ \sigma_{yx}^z \sigma_{yy}^z 0 \\ 0 & 0 & \sigma_{zz}^z \end{pmatrix}$
Wimmer. <i>et al.</i> . arXiv:1502.04	947 (2015)		x x E	$\vec{B} = 0$

Anomalous and spin Hall effect MAXIMILIANS-UNIVERSITÄT MÜNCHEN in diluted ferromagnetic alloys M₂Pt

LUDWIG-

LMU

ferromagnetic 4/mm'm'

- complex electronic structure at E_{r}
- skew scattering very sensitive to fine details

first-principles approach mandatory

Zimmermann, et al. PRB 90, 220403(R) (2014)

skew scattering contributions to AHE, SHE 1 % magnetic impurities in Pt host

Approach	Transport description	Electronic structure	Spin-orbit coupling
Method A	BE	FP	Pauli
Method B	BE	ASA	Dirac
Method C	KSF	ASA	Dirac

Wimmer, *et al.*, arXiv:1502.04947 (2015)

21

Wimmer, et al., arXiv:1502.04947 (2015)

Systems lacking inversion symmetry

Prediction:

Manchon & Zhang, PRB **79**, 094422 (2009) Garate & MacDonald, PRB **80**, 134403 (2009)

Experiments:

Miron *et al.*, Nat.Mat. **9**, 230 (2010) Gambardella & Miron, Phil. Trans. R. Soc. A (2011) **369**, 3175 Garello *et al.*, Nat.Nanot. **8**, 587 (2013)

Possible avenue to avoid large switching currents (10^7 A / cm^2) that currently hamper progress in STT-RAM technology.

$$\tau_{\hat{B}_{i}\hat{A}_{j}}(\omega,\vec{H}) = \int_{0}^{\infty} dt \, e^{-i\omega t} \int_{0}^{\beta} d\lambda \left\langle \rho(\vec{H})\hat{A}_{j}\hat{B}_{i}(t+i\hbar\lambda;\vec{H}) \right\rangle$$

Freimuth, et al, arXiv: 1305.4873

For torkance
$$\hat{B}_i = \hat{T}_i$$
 $\hat{A}_j = \hat{j}_j$ Torque operator $T_i = \frac{\partial}{\partial u_i} \hat{H}$ Spin magentisation $\vec{m} = m\vec{u}$

Ebert & Mankovsky, PRB **79**, 045209 (2009) Ebert, *et al*, PRL **107**, 066603 (2011) Mankovsky, *et al*, PRB **87**, 014430 (2013)

$$ec{T} = t \, ec{E}$$

Transformation of torkance under symmetry operations of magnetic space group

$$t_{ij} = \sum_{kl} t_{kl} D(R)_{ki} D(R)_{lj} \det(R) \quad \text{unitary operations} \quad \text{all } R \quad \text{tensor shape}$$
$$t_{ij} = \sum_{kl} t'_{lk} D(R)^*_{ki} D(R)^*_{lj} \det(R) \quad \text{anti-unitary operations}$$

Example – inverse Heusler system

Results obtained by analytic computation using computer algebra system (CAS)

magnetic point group	<u>t</u>	magnetic point group	$\underline{\mathbf{t}}$
$\bar{1}', 1, 2', m'$	$\begin{pmatrix} t_{xx} & t_{xy} & t_{xz} \\ t_{yx} & t_{yy} & t_{yz} \\ t_{zx} & t_{zy} & t_{zz} \end{pmatrix}$	$\overline{4}2m, 4'/m'm'$	$\begin{pmatrix} t_{xx} & 0 & 0\\ 0 & -t_{xx} & 0\\ 0 & 0 & 0 \end{pmatrix}$
$ \begin{array}{l} \bar{1}, \bar{3}, \bar{3}1m, \bar{3}1m', \bar{3}m'1, \bar{3}m1, \bar{4}3m, \bar{6}, \bar{6}2'm', \bar{6}2m, \bar{6}m'2', \bar{6}m2, \\ 2'/m', 2/m, 4'/m, 4'/mm'm, 4'/mmm', 4/m, 4/mm'm', 4/mmm, \\ 6'/m, 6'/m', 6'/m'm'm, 6'/m'mm', 6'/mm'm, 6'/mmm', 6/m, \\ \end{array} $	$\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$	$\bar{4}m2, 4'/m'mm'$	$\begin{pmatrix} 0 & t_{xy} & 0 \\ t_{xy} & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$
$6/mm'm', 6/mmm, m\bar{3}, m\bar{3}m, m\bar{3}m', m'\bar{3}'m, m'm'm, mmm$		$\bar{4}'3m'$, 23, $4'32'$, 432, $m'\bar{3}'$, $m'\bar{3}'m'$	$\begin{pmatrix} t_{xx} & 0 & 0 \\ 0 & t_{xx} & 0 \end{pmatrix}$
2, 2/m'	$\begin{pmatrix} t_{xx} & 0 & t_{xz} \\ 0 & t_{yy} & 0 \\ t_{xz} & 0 & t_{xz} \end{pmatrix}$		$\begin{pmatrix} 0 & \overline{0} & t_{xx} \end{pmatrix}$
2'/m m m'm 2'	$\begin{pmatrix} 0 & t_{xy} & 0 \\ t_{xy} & 0$	$\overline{3}'1m', \ \overline{3}'m'1, \ \overline{6}'2m', \ \overline{6}'m'2, \ 312, \ 321, \ 4/m'm'm', \ 422, \ 6'2'2, \ 6'22', \ 6/m'm'm', \ 622$	$\begin{pmatrix} t_{xx} & 0 & 0 \\ 0 & t_{xx} & 0 \\ 0 & 0 & t_{zz} \end{pmatrix}$
2 /,,	$\begin{pmatrix} t_{yx} & 0 & t_{yz} \\ 0 & t_{zy} & 0 \end{pmatrix}$	$\bar{4}'m'2, 4'2'2$	$\begin{pmatrix} t_{xx} & t_{xy} & 0 \\ t_{xy} & t_{xx} & 0 \\ 0 & 0 & t_{zz} \end{pmatrix}$
$\bar{4}'2m'$, 222, 4'22', $m'm'm'$	$\begin{pmatrix} 0 & t_{yy} & 0 \\ 0 & 0 & t_{zz} \end{pmatrix}$	$\bar{3}'1m, \bar{3}'m1, \bar{6}'2'm, \bar{6}'m2', 31m, 3m1, 4/m'mm, 4mm, 6'm'm,$	$\begin{pmatrix} 0 & t_{xy} & 0 \\ -t_{xy} & 0 & 0 \end{pmatrix}$
$\bar{4}', 2'2'2, 4', m'm'2$	$\begin{pmatrix} t_{xx} & t_{xy} & 0\\ t_{yx} & t_{yy} & 0\\ 0 & 0 & t \end{pmatrix}$		$\begin{pmatrix} 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} t_{xx} & t_{xy} & 0 \\ t_{xx} & t_{xy} & 0 \end{pmatrix}$
	$\begin{pmatrix} 0 & 0 & l_{zz} \end{pmatrix}$	42m, 4mm	$ \begin{pmatrix} -t_{xy} & -t_{xx} & 0 \\ 0 & 0 & 0 \end{pmatrix} $
$\overline{4}'m2', 4'mm', mm2$	$\begin{pmatrix} 0 & t_{xy} & 0 \\ t_{yx} & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$	anly matarials without	
	$\begin{pmatrix} 0 & 0 & 0 \end{pmatrix}$	only materials without	\rightarrow
m'mm	$\begin{pmatrix} 0 & 0 & t_{yz} \\ 0 & t_{zy} & 0 \end{pmatrix}$	inversion symmetry	M
$\bar{3}', \bar{6}', 3, 312', 31m', 32'1, 3m'1, 4, 4/m', 42'2', 4m'm', 6, 6', 6/m', 62'2', 6m'm'$	$\begin{pmatrix} t_{xx} & t_{xy} & 0 \\ -t_{xy} & t_{xx} & 0 \\ 0 & 0 & t_{zz} \end{pmatrix}$	show torkance	
$ar{4},ar{4}2'm',ar{4}m'2',4'/m'$	$\begin{pmatrix} t_{xx} & t_{xy} & 0 \\ t_{xy} & -t_{xx} & 0 \\ 0 & 0 & 0 \end{pmatrix}$	$j \longrightarrow c$	
		FM	

LUDWIG-

MAXIMILIANS-UNIVERSITÄT MÜNCHEN

A universal scheme has been presented to

predict the shape of any linear response tensor

- Electrical and spin conductivity
 - Only magnetic Laue group relevant
 - AHE in non-collinear AFMs
 - Longitudinal Spin Conductivity
- Torkance (spin-orbit torque)

All results in full agreement with ab-initio calculations based on fully relativistic formalism

- Only for systems without space inversion symmetry
- Gilbert damping
- Edelstein effect
- Thermoelectric effects
- Layer-resolved conductivities
- Non-linear response

