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Introduction
High thermal conductivity Low thermal conductivity

Heat Removal Materials Thermoelectric Materials



High Thermal Conductivity of Carbon Nanotubes

Mingo & Broido, Nano Lett. 5, 1221 (2005).

Cu (316 K)
Diamond (316 K)

CNT (100 K)

Thermal conductivity of CNTs is higher than that of diamond.
--> CNTs are potential candidates for heat removal materials.

CNT (316 K)



Fujitsu (2005)

Device

Heat SinkIntel (2003) CNT bundles

Heat flow

Nagoya Univ. (2008)

High-Performance Devices using CNTs as Heat Removal



Low Thermal Conductivity of SiNWs

- Low Thermal Conductivity
- High Electrical Conductivity

Si nanowire  (UC Berkeley)

Hochbaum et al., Nature 451, 163 (2007)

Energy conversion 
from heat to electrical energy

rough surface



New Thermal Transport Physics at Nanoscale
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Quantization of Thermal Conductance!!

Schwab et al., Nature (2000)

SiN nanowires

κ =
I

TH − TC

κ0 =
π2k2BT

3h



Theory of Thermal Transport 
at Macroscale



Phenomenological Theory: Fourier’s law

J = −λ
dT

dx

Jean Baptiste Joseph Fourier 
(1768 –1830, French)

TH TC
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dT

dx

Thermal current J

Fourier’s Law

independent of sample volume.
λwhere is the thermal conductivity, which is



L

Boltzmann’s Kinetic Theory

J =
1

V

�

k>0,ν

�ωk,ν (fk,ν − fB(ωk,ν , T )) vk,ν

For simplicity, let us consider quasi-1D systems with volume V(=LS).

The thermal current density is caused by a deviation from equilibrium:

S

where fB is the Bose-Einstein distribution of phonons:

fB(ωk,ν , T ) =
1

exp (�ωk,ν/kBT )− 1

Thermal current density

Bose-Einstein distribution



Boltzmann equation for phonon distribution function fk,ν

dfk,ν
dt

+ vk,ν
∂fk,ν
∂x

=

�
∂fk,ν
∂t

�

coll

Drift term Collision term

For the steady states (df/dt=0), Boltzmann equation becomes

vk,ν
∂fk,ν
∂x

=

�
∂fk,ν
∂t

�

coll
Steady-state Boltzmann equation

Boltzmann equation

Two simple approximations:

(1) Relaxation time approximation (2) Local equilibrium assumption
�
∂fk,ν
∂t

�

coll

= −fk,ν − fB(ωk,ν , T )

τk,ν

fk,ν ≈ fB(ωk,ν , T (x))

vk,ν
∂fk,ν
∂x

= vk,ν
∂fB(ωk,ν , T )

∂T

dT

dxτk,ν : relaxation time



Steady-state Boltzmann equation under two assumptions (1) & (2)

fk,ν − fB(ωk,ν , T ) = −τk,νvk,ν
∂fB(ωk,ν , T )

∂T

dT

dx

J =
1

V

�

k>0,ν

�ωk,ν (fk,ν − fB(ωk,ν , T )) vk,ν

Thermal current density under two assumptions (1) & (2) can be expressed as

= −λ
dT

dx

λ =
1

V

�

k>0,ν

�ωk,ν |vk,ν |Λk,ν
∂fB(ωk,ν , T )

∂T

Here, λ is the thermal conductivity, which is given as

Fourier’s law

where is the mean free path of phonons. Λk,ν = τk,ν |vk,ν |

Thermal conductivity 



Thermal conductivity expression in frequency domain

λ =
1

S

�

ν

� ωmax
ν

ωmin
ν

�ωDν(ω)

2
|vν(ω)|Λν(ω)

∂fB(ω, T )

∂T
dω

λ =
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2πS
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�ω
�
∂f(ω, T )

∂T

�
Λν(ω)dω

Dν(ω) =
1

L

�

k

δ(ων − ωk,ν) =
1

π|vν(ω)|

where Dν(ω) is the density of states (DOS), which is given as

Then, the thermal conductivity of quasi-1D system is expressed as

The thermal transport behavior of quasi-1D systems is determined by 
the mean free path Λν(ω).



Breakdown of Fourier’s Law
Λν(ω) � LFor a short system with

⇒ Thermal conductivity λ cannot be defined!!

Thermal Conductance

κ = lim
TH ,TC→T

I

TH − TC

T: Averaged temperature defined as T=(TH+TL)/2
I:  Thermal current I=JS

dT

dx
= 0



Theory of Thermal Transport 
at Nanoscale



Landauer Theory of Phonon Transport

Hot heat reservoir 

TH

Left lead Cold heat reservoir 

TC

Right leadConductor

1

Let us consider quasi-1D systems whose length L is much shorter than 
the mean free path of phonon Λ.

iLν (ω) = �ω|vν(ω)|D+
ν (ω)f(ω, TH)

=
1

2π
�ωf(ω, TH)

iRν (ω) = �ω|vν(ω)|D−
ν (ω)f(ω, TC)

=
1

2π
�ωf(ω, TC)

Thermal current 
from the left lead to the center

Thermal current 
from the right to the center



Net thermal current flowing through the left lead, which is carried by 
phonons with mode ν

iν(ω) = iLν (ω){1−Rν(ω)}− iRν (ω)Tν(ω)

= Tν(ω){iLν (ω)− iRν (ω)}

=
1

2π
�ωTν(ω){f(ω, TH)− f(ω, TC)}

Thus, the thermal current is given as

I =
�

ν

� ωmax
ν

ωmin
ν

iν(ω)dω

=
1

2π

�

ν

� ωmax
ν

ωmin
ν

�ω{f(ω, TH)− f(ω, TC)}Tν(ω)dω

Hot heat reservoir 

TH

Left lead Cold heat reservoir 

TC

Right leadConductor

1



The thermal conductance

κ =
1

2π

� ∞

0
�ω

�
∂f(ω, T )

∂T

�
T (ω)dω

Thus, the thermal conductance for the coherent phonon transport is
given by 

Landauer formula of
Thermal conductance

The coherent phonon transport behavior of quasi-1D systems is 
determined by the phonon transmission function T(ω).

Rego and Kirczenow,  Phys. Rev. Lett. 81 232 (1998)



Ballistic Phonon Transport 

κ = 4× k2BT

h

� ∞

0

x2ex

(ex − 1)2
dx = 4κ0

Let us consider low-T limit where the optical phonons are not excited.

Acoustic phonon modes of quasi-1D systems:

LA TW
FL

4 modes

Thermal conductance of quasi-1D systems at low-T

κ0 =
π2k2BT

3h
≡ g0T

Thermal conductance quantum

(g0 = 9.4× 10−13 W/K2)



Experimental Observation of 
Thermal Conductance Quantum
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Schwab et al., Nature (2000)

SiN nanowires

The quantum of thermal conductance is observable at less than 0.8K



Experiments: Carbon Nanotubes

T-linear region: W 

Fig.: Thermal conductance of single-walled CNTs
       with diameter d=1.2nm and d=1.4nm.

Hone et al., Appl. Phys. A 74, 339 (2002)



Low-T Thermal Conductance of Pristine SWNTs

■ Quantized Thermal Conductance

■ At Extremely Low T

■ Quantization Plateau Width
Yamamoto et al., PRL 96, 255503 (2004)

LA TW
FLs

Plateau width increases with decreasing 
the tube diameter.
(Excitation energy of opt. phonons ∝1/d )



Summary of Phonon Landauer Formula

+ Thermal conductance of Landauer-type model

+ System configuration (Landauer-type model)

Hot Heat bath Cold Heat bathIdeal lead Ideal leadScattering regime

1 ζ

R

κ(T ) =

� ∞

0

dω

2π
�ω∂fB(ω, T )

∂T
ζ(ω)

�ω
fB(ω, T )

T

ζ(ω)

: Averaged temperature of the hot and cold heat baths
: Energy of a phonon shot from a heat bath

: Bose-Einstein distribution function of a heat bath
: Phonon transmission function

+ Two typical methods for the phonon transmission calculation

Yamamoto & Watanabe: PRL 96, 255503 (2006) 

Rego & Kirczenow: PRL 81, 232 (1998)

- Phonon wavepacket scattering method

- Nonequilibrium phonon Green’s function method
Kondo, Yamamoto, Watanabe: JJAP, 45, L963 (2006)



Phonon Wave-Packet Scattering Method

Energy of incident phonon wavepacket: 11.6 meV

CNT

Advantage
   Easy to visualize dynamics of
   phonon scattering

Disadvantage
   Limit of energy resolution 
   due to the uncertain principle

Vacancy defect

Kondo, Yamamoto, Watanabe, JJAP, 45, L963 (2006)



NEGF Method

G(ω) =
�
(ω2 + iδ)M− (D+Σ(ω))

�−1

+ Retarded Green’s function

+ Dynamical Matrix: D

Dij(ω) =
∂2Etot

∂riα∂rjβ
(i, j ∈ Scattering region,α,β = x, y, z)

M

Σ(ω)

D

: Diagonal mass matrix with elements                        (      is mass of ith atom)
: Dynamical matrix of a scattering region 

: Self-energy matrix due to the left and right leads

Mij = miδij mi

The total energy calculation with high accuracy is needed 
to obtain the phonon states.

ζ(ω) = Tr
�
ΓL(ω)G(ω)ΓRG

†(ω)
�

+ Green’s function expression of the transmission function
Yamamoto & Watanabe: PRL 96, 255503 (2006) 
Mingo: PRB 74, 125402 (2006)
Wang, Wang & Zheng: PRB 74, 033408 (2006)G(ω)

ΓL/R(ω)

: Retarded Green’s function
: Level-broadening function



Simulation on
Thermal Transport in Carbon Nanotube



Influence of Defects on 
Thermal Transport in CNTs

Topological defects 

Suenaga, et al., Nature Nanotec. 2, 358 (2007)!

Hashimoto, et al., Nature 430, 870 (2004)

Vacancy defects 



A Single Vacancy
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@ 3.0 meV 

@ 11.6 meV 

Kondo, Yamamoto, Watanabe: JJAP, 45, L963 (2006) 

Vacancy defect 

CNT 

3.0 meV
11.6 meV



Atomic Vibration around Vacancy

Localized phonon state @ 11.6meV



Thermal conductance after Annealing

(3,3)! (5,5)! (7,7)! (3,3)! (5,5)! (7,7)!

■ Energy Gain due to Structural Change (DFT calculations) 

Energy gain more than 1 eV

Metastable State Stable State

-1.76 eV -1.53 eV -1.23 eV

Annealing

(Monatomic Vacancy) (5-1db defect)

Miyamoto et al., Physica B 323, 78 (2002)



Disappearance of Localized Phonons

Yamamoto, Watanabe: Phys. Rev. Lett. 96, 255503 (2006)

T [K] 
0 20 40 3 
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Vacancy 
5-1db defect 

Pristine CNT 

!"=11.6 meV 

!"=18.5 meV 



Influence Isotope Impurities

Maruyama et al., J. Therm. Sci. Tech. 1, 138 (2006) 

Zhang and Li, J. Chem. Phys. 123, 114714 (2005) 

14C 13C 
MD simulation results



Experiments: BN nanotubes

99.56% 11B!

19.9% 10B, 80.1% 11B!

Chang et al., PRL 97, 085901 (2006) 

50% reduction!

(Zettl group, UC Berkeley)!



Our NEGF Simulations

To clarify the dependence of !

    - chirality of SWNTs, !
    - density of isotopes,!
    - mass difference between 13C and 14C, !

we discuss the phonon transport in!

    - (5,5) Metallic SWNT with 15.0% of 13C isotopes!

    - (8,0) Semi-conducting SWNT with 9.4% of 14C isotopes !

Yamamoto, Sasaoka, Watanabe, Phys. Rev. Lett. 106, 215503 (2011)



Transmission Functions
(5,5)SWNT with 15% of 13C isotopes 

※ Averaged over 200 random configurations !

(8,0)SWNT with 9.4% of 14C isotopes 
※ Averaged over 200 random configurations !

Low-!: The transmission is not reduced by isotopes. 
              --> Quantized thermal conductance can be observed at low T. 
 Higher-!: The transmission is strongly reduced.               --> Thermal conductance decreases at moderate T. 



Thermal Conductance Reduction

(5,5) SWNT with 15% of 13C isotopes 

For a micrometer-SWNT, the thermal conductance goes down to ～20%.



Transmission Reduction Mechanisms

Diffusive Scattering Localization 
(Interferential effects)!(Single-phonon scattering)!

Power-law decay! Exponential decay!
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Mean Free Path & Localization Length
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Savić, et al., PRL. 101, 165502 (2008)

 (7,0) SWNT with 10.7% 14C isotopes
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Experimental Evidence of Phonon
Anderson’s Localization

Zhao, et al., APL 99, 093104 (2011)

Casta, et al., Carbon 49, 4719 (2011)

G+

G- mode G+ mode



Comparison between Exp. and Calc.
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Summary

• Introduction

• Boltzmann Theory of Thermal Transport

• Landaur Theory of Thermal Transport

• Thermal Transport in Defective Carbon Nanotubes

• Vacancy defect scattering

• Isotope effects



Phonon Dispersion Relations
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Various 13C configurations

T=0.51

T=0.52

T=0.49

T=0.51

・
・
・
・
・

Transmissions

Transmission Fluctuation & Histogram

Transmission Histogram
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* Lognormal distribution
* Std. Dev. of P(ζ) decreases 
   with increasing ζ. 



High-T Thermal Conductivity of Carbon Nanotubes

The thermal conductivity of an isolated suspended SWNT with a length L=2.6 µm 
and diameter d=1.7 nm in T = 300 to 800 K. 

The dashed curve indicates the 1/T behavior expected from the 3-phonon Umklapp 
scattering.

E. Pop, et al., Nano Lett. 6, 96 (2006).



Merit of NEGF Method for Large-Scale Simulation

G =




GLL GLC GLR

GCL GCC GCR

GRL GRC GRR





G† =




G†

LL G†
CL G†

RL

G†
LC G†

CC G†
RC

G†
LR G†

CR GRR†



 ΓR =




0 0 0
0 0 0
0 0 ΓRR





ΓL =




ΓLL 0 0
0 0 0
0 0 0





ζ(ω) = Tr[ΓL(ω)G(ω)ΓR(ω)G
†(ω)]

= Tr




ΓLLGLRΓRRG

†
LR ΓLLGLRΓRRG

†
CR ΓLLGLRΓRRG

†
RR

0 0 0
0 0 0





= Tr[ΓLL(ω)GLR(ω)ΓRR(ω)G
†
LR(ω)]

The transmission function is described by small matrices!!

L RC


