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Method, in a nutshell
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Project out the ground state —
imaginary time Schrodinger eq. (Fermi 1933)

W (R, t)=exp(—tH)p (R) — W(R,t—oo) c d (R)

et 1 X
projector in trial wave ground state
parameter ¢ function of given symm.

H — interacting quantum particles, eg, electrons + ions
R=(r ,r,, .., r,) — 3N-dim. continuous space
Projection/evolution equation — Euclidian/imaginary time Sch. eq.

—0 W(R,t)=Hy(R,1)
v

Y(R,t+7)=[ G(R,R",T)¢(R',1)d R’

\\\7 ///‘

Green's function G(R,R',v)=(Rlexp(—t H)R') — transition probability
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Stochastic method for solving the evolution

Y(R,t+7)=[ G(R,R",T)¢(R',1)d R’

Map it onto an equivalent stochastic process:

4 ~
Value of the wavefunction «— density of sampling points in 3N-space

V(R 1) = dens[>"" 5(R—R,(1))]+e

sampling points — “walkers” — eigenstates of position operator
\_ ,/‘

statistical

Solution: take short-time approx.to G(R, R’ ,t) and iterate

Essentially: Feynman path integrals in Euclidean time

W Lubos_Mitas@ncsu.edu



Toy model: 1D harmonic oscillator

H=T+V(x)

Propagator

G(x,x', T)
v

C e—(x—x') /2T'€_<V<X)_ET)T

/ \

diffusion weight

W (%) A
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Sign problem: fermionic wave functions are both + and -

Naive approach: decompose to + and -
W, (R)=y_(R)—w_ (R)
~0,W (R,t)=Hw"(R,1)
~0,w (R, 1)=Hy (R, 1)

However, + and - components are independent (linearity of Sch. eq.) —
both components converge to the lowest energy solution — bosonic !

fN-\/K\ T~

lim,_ @ (R,t)— lim__ W (R,t) < exp[—(E —F

t— o0 Fermionic Bosonic ) ]

Fermionic "signal” decays exponentially quickly into a bosonic "noise™
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Solution: impose a constraint — fixed-node
approximation diffusion Monte Carlo (FNDMC)

Fixed-node (FN) approximation: |

sign[o(R.1)] = sign[w,(R)

Then the product is nonnegative: V. (R)¢(R,¢)=f(R,1)>0

Modify the Schr. eq. accordingly: f(R,t+T)=f G(R,R',T)f(R',t)dR'

The projection f(R,t—o) o« ¢, (R)¢,  (R)now depends on

the fermion node: (3N-1)-dim. hypersurface defined as &(r ,r,,...,r,)=0

Clearly, the node divides the configuration space into + and — domains.

NC STATE UNIVERSITY
Lubos_Mitas@ncsu.edu



Fermion node toy model: excited state of harmonic

oscillator
Vix)=x"
H=T+V (x)
LI}im't( ) f !
Propagator
G(x,x', 1) ti
v
Ce_(x_xI)Z/ZT.e—<V(x)—ET)T T I
diffusion renorm
node /
+ node (boundary cond.)
LIjexcit(x)
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Fixed-node approximation and fermion nodes

- antisymmetry (nonlocal) replaced by a boundary (local) — boundaries
are easy to enforce

- exact node implies recovering exact energy (in polynomial time)

1) HEHEEE

wave function value

I YP— 5 3D subset of 59-dim. node

- exact nodes generally unknown, however, approximate nodes
suprisingly accurate (and systematically improvable)
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QMC calculations: basic steps

Hamiltonian: - often valence e- only, using pseudopots/ECPs
- explicit e-e interactions, full many-many body

Trial wave functions:
- correct symmetries

- sampling efficiency
- capture the physics

Commonly used correlated Slater-Jastrow type:

V,.a=det [{9 J]det ({9, ]exp[U ]
or

Vo= 2o, Co et [0, }]det, [[o,}]explU ]
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QMC calculations: basic steps |

Orbitals (¢}, (9;/from : - Hartree-Fock, post-HF
- Density Functional Theory, hybrid DFT
- possibly Cl (natural orbitals), etc
— QMC interfaced with other codes
Explicit correlations: —Z folr, Zfe on(77)
- optlmlzed variationally

P [ Wi H, Iy, 1dR _ 1 Z Samp,e)+ESmr<1/m>

YMC f wz d R sample wT ( Rsample)

where the samples are distributed as LIJ?(R)
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QMC calculations: basic steps il

Quantities which do not commute with Hamiltonian are
more complicated — DMC produces only mixed estimators

(A= 4w, )

Correction:
(A) ~ 2(yldly,,.> —(plaw,)

Methods such as reptation MC sample the square of the wave
function but significantly more expensive
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QMC calculations of solids

Solids: periodic supercells
- Coulomb potential energy — Ewald sums

- kinetic energy: sampling of k-points of the
supercell Brillouin zone — twist averages

- twist average states are not necessarily periodic with the
supercell, neither necessarily real (fixed-node can be
generalized to fixed-phase, more on the fixed-phase later)

- thermodynamic limit: finite size corrections

(for metals this could be a challenge, eg, for a complicated Fermi
surface)
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How does it work ?

Let us look at a few applications
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Some history: what is the lowest energy isomer of of

Cyo 227

ring
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bowl cage

J.C. Grossman, LM, K. Raghavachari, PRL 75, 3870 (1995)
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QMC was the first method to predict this
(later confirmed by independent methods)

Relative energy [eV]
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Azobenzene: optically active molecule with
photoisomerization

NC STATE UNIVERSITY | M. Kostolny, R. Derian, I. Stich, L.M. 2010
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N
CeHs

N =" C5H5/

(E) (Z)
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Ground and excited states of azobenzene:
~ 0.04 eV accuracy with FNDMC/multi-det.
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In some cases, exceptional accuracy:
solid Si (s-cell up to 214 atoms)
FNDMC/single-det/PBE nodes ~ 98 % of correlation!

Atom Solid/per atom
>
o ~100 eV
o
3 (3s, 3p val.
o states)
2

FNDMC y1det v

<«—/ ~0.03eV
fixed-node
errors

~~ FNDMC y 1det

Exact atom+Exp. cohesion

Exact (DMc/CI, cc)*

- experiment — 4.62(8) eV
Lubos_Mitas@ncsu.edu
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More recent challenge: FeO solid at high pressures

- large e-e correlations, difficult: competition of Coulomb,

exchange, correlation and crystal-field effects; open d-shell;
important high-pressure physics (Earth interior, for example)

- mainstream Density Functional Theories (DFT) predict:
- metal instead of a large-gap insulator
- wrong equilibrium atomic structure

B1 (NaCl) AFII (true equil.) iB8 (NiAs) AF (high press.)

®

R

28288
¢ Of
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Plain vanilla fixed-node DMC for the FeO solid

- Ne-core, scalar relativistic pseudopotentials on Fe

- 8 supercells (176 valence e-) of FeO in DMC, larger
supercells in VMC

- total energy about 4000 eV, trying for accuracy 0.1 eV

- Slater-Jastrow wf W, ,=det'[¢ ldet'[¢, Jexp[U ]

- one-particle orbitals from hybrid DFT (more on that later)
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Comparisons of the FeO solid equilibrium parameters

DFT/PBE FNDMC  Exp.(FeO, )
iB8-B1/AFMII [eV] -0.2 0.5 (1) >0
Cohesion [eV] ~ 11 9.7(1) 9.7(2)
a_0[A] 4.28 4.32(1) 4.31-4.33
K_0 [GPa] 191 170(10) 140 - 180
Gap [eV] ~ 0 (metal) 2.8(4) ~24

J. Kolorenc & LM, Phys. Rev. Lett. '08
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Gap and excitations in QMC

Assume an insulator:

1) Excite a valence state

into a conduction state
E_gap ~ E_excit- E_ground

- carry out several of these
— “band structure scan”

2) Add an electron
(technically more
complicated, but doable)

Energy (eV)

N

|
|

| — ]

(]
T e T e e rrrr rrrn I e T I AR FE R R FT TR AT T




Excitations ? They are not the ground states ...

Still, excitations can be calculated (after all, even the fermionic
ground state is an excited state!)

Basic possibilities:

1) Excitation is of a different symmetry — so, the ground state of
the given symmetry

2) Excitation is of the same symmetry — suprisingly, it often works
similarly as the ground state calculation.
(How come ? The reason is that the overlap with the ground state
is typically much, much smaller than the fixed-node error.)

3) The reasoning in 2) does not apply (it can happen). Then explicitly
orthogonalize (that is more complicated but not impossible).



Finite size corrections — works reasonably well for

insulators

Extrapolation to the thermodynamic limit at two different volumes: ~ 1/N
S(k) includes corrections both for potential and kinetic energies

0.2
00 m———mmmee———— Per il STt LI
-0.2
@) V=20.4 A3/FeO
Q_'j -0.4
2
= -0.6
T
w —-0.8
-1.0
pure Ewald —+—
-1.2 | S(K) correction —<—
16 12 8
No. of FeO formula units
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FeO solid at high pressures in DFT: hybrids with
weighted exact exchange (or DFT+U)

In order to reconcile DFT with experiment one needs to employ mixing

of the exact exchange: transition pressure proportional to mixing ...
or to the Hubbard U (eg, Fang,Terakura, Sawada, Miyazaki, Solovyev, '98)

Complicated to justify the “correct” weight or U, non-variational, ...

Fed, Crystal2003, PBE + 10% HF, ¥n2 ECP FeO, Crystal2003, PBE + 20% HF, Yn2 ECP
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Equation of state of FeO solid at high pressures:
QMC shows transition at ~ 65 GPa (Exper. 70-100)
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Orbitals: hybrid functional with varying weight of
exact/Fock exchange
Weight optimized by FNDMC: clear minimum!

PBEQ } l

wTrial: detT { q)oc
025 1 | | | ]

0.20 t 1
17.3 A3/FeO _

PBEQ_

det"[ ¢,

Jlexp[U

COI"}’]

0.1 0.2 0.3 04 0.5
Exact exchange weight in PBEOw

HF weight — d-p hybridization: HF “ionic” vs DFT “covalent”



QMC byproduct: construction of optimal effective
Hamiltonians (one-body or beyond)

The mixing of exact exchange into the effective one-particle
(DFT) Hamiltonian is clearly justified:

- variationally optimized fixed-node DMC energy

- orbitals beyond Hartree-Fock — correlated (the most appropriate
orbitals need not to necessarily minimize the HF energy)

- points out towards a more general idea/tool: variational space
includes not only the wave function but also optimal effective

Hamiltonian (possibly more efficient and faster generation of
accurate nodes)

FNDMC used as a variational theory —
J. Kolorenc, S. Hu, LM PRB 82 115108 ('10)
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Enables to look (“back”) at the optimal one-particle
picture within the effective Hamiltonian, density of

states, gap, etc

total density of states

-
e
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Beyond Slater-Jastrow wave functions:

BCS and pfaffians
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Why beyond Slater-Jastrow ?

Slater-Jastrow: Yy =det' [0, ]-det’ [ Jexp[U ]

i

node=(node')-(node")
Strictly speaking, nodes have such product form only in
non-interacting systems — the nodal domains count is
higher than it should be — sometimes this still an excellent
approximation while in other cases it does matter
Possibilities to take unlike spin correlations into account:

1) linear combination of determinants (Cl)

2) more general antisymmetric forms
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Possible antisymmetric forms (polynomial complexity)

Slater determinant: v, (1,2,.., AH ¢,(j)=det[o,(j)]
4

single-particle orbitals

BCS wave function (spin singlet, fixed-number of pairs,
in first quantization):

chszdet[q);l(i,j)] i,j=1,...,N

pair orbital

Pfaffian: (any spin state, antisymmetrized pairs of any spin)
V= A[0(1,2)0(3,4)..]=pf Lo(i, /)] i,j=1,...,2N

\/

pair spinorbital
Lubos_Mitas@ncsu.edu



Pfaffian: signed sum of all distinct pair partitions of
permutations (Pfaff, Cayley ~ 1850) — polynomial
complexity

[, <Jj.,, k=1,.,2N

Pf[a,-j]zzp (—I)Pailjl...a

ZZNJZN

» determinant is a special case of pfaffian (pfaffian is more general)

« pfaffian algebra similar to determinants (minors, etc) — fast
evaluation, O(N*3)

¢ VY, Vs special cases of V.

b(x,x )= (r,r JTL=1T) 4y (r e YO+ r YLD+ (), 7 J(TL+LT)

A ~— A /V

symmetric/singlet antisymmetric/triplet
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Pfaffian wavefunctions with both singlet and triplet
pairs (beyond BCS!) — all spin states treated
consistently: simple, elegant

Tl T

b w
LI)PF:pf _(me Xu LIJL X eXp[Ucorr]
_LleT _Llle 0
- pairing orbitals (geminals) expanded in one-particle basis
bli, j)=20 o auglh () ()R (D) R ()]
¥ (00 J)= 2y Poglh ()R ()= (i) R ()]

- unpaired " (i>=zo< ¢ h (i)

BCS wf. for 2N-particle singlet is a special case: v, =det[¢']

BCS

(M. Bajdich et al, PRL '06; PRB '08) Lubos Mitas@ncsu edu
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DMC correlation energies of atoms, dimers
Pfaffians: more accurate and systematic than HF
while scalable (unlike Cl)

100 -
‘_\-’\‘\‘/‘%flfs 1

— - Tt N 7]
2 95 BCS nodes T noces _
t = -
o] HF nodes 1
Ol - _
W gof _

g5L— ! ! ! ! !

C N O ¢C N, O,
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Expansions in many pfaffians for first row atoms:
FNDMC ~ 98 % of correlation with a few pfaffians

Table of correlation energies [%] recovered: MPF vs Cl nodes

n = # of pfs/dets

WF n C n N n (@)
DMC/MPF 98.9 98.4 97.2
DMC/CI 99.3 98.9 98.4

- further generalizations: pairing with backflow coordinates,
independent pairs, etc (M. Bajdich et al, PRL 96, 130201 (2006))

Pfaffians describe nodes more efficiently
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Nodes of different wfs (%E_corr in DMC):
atom wf scanned by 2e- singlet (3D node subset) —
correlation leads to different topologies

HF (94.0(2)%) MPF (97.4(1)%) Cl (99.8(3)%)




Something different from electron-ion Hamiltonians:

Unitary ultracold atoms
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Ultracold fermions system and interactions

- periodic boundary conditions

2
(2/R )
cosh’ (2rl.j/Reﬁ)

- interaction tuned to unitarity 7V (r,) = -2

- extrapolated to R_eff — 0
- trial function wT=1PBCS=def[¢”]
- pairing orbital built from superposition of gaussians+neighb. cells

q)Tl(ry'):Za,b,c . czbc exp[—oczbc(rij—a L—-bL —c Lz)z]
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Ultracold fermions in a special state: unitary gas
(total energy first calculated by QMC)

Effective, short-range attractive interaction Scattering length: a
1/a <0 BCS, weakly paired superconductor
17a >0 BEC of covalently bonded molecules
17a — 0 unitary limit - » <r <a,

Interaction is tuned, so that a pair is on the verge of forming a bound state,

(ie, E=0) v\@

Total energy: E""’= gE’™, E « Bertsch parameter

tot tot
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BCS — unitary — BEC crossover

rip(r) rip(r) r(r)

a<o : a->%eo G0

/ S a | “r\

Resr

Ress Bers
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Benchmarking on a small system: 4 unitary fermions
QMC vs two independent lattice many-body methods

0.26

024 |
[ 0.211(2)

L] I 1 I
Hamiltonian lattice H|
Hamiltonian lattice H,

0-35 T T T T T T
Euclidean lattice ———
03
2.2 Mm—m—m—m—-————"
0.245 | 8 025
0.24 = 0.206(9)
0.235 | | S 2 H-
o A | gL \
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W e | B// 0151 \*\i‘f
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Bertsch parameter for (infinite) unitary fermions:
improving wave functions

| HF nodes 0.50(1)
€ onpnre! BCS nodes = 0.44(1) J.Carlsonetal,'03
E__IBCSnodes < 0393(2) X Li, L.M., PRB2011

?éFNDMC

Energy gain from the BCS nodes dramatic: > 20% of the total energy !
(in electronic structure problems it is only ~ 0.03% of the total energy)

Recently, even slightly better energies were obtained, J. Carlson,
S. Zhang, S. Gandolfi and coworkers 2011
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Unitary limit: very robust condensate ~ 53% of
particles

Find the amount of the condensate directly: averaged two-body

density matrix at long-range and read off the value

NC STATE UNIVERSITY

1.4
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Dramatic change also in the nodes

3D scan with the spin-up and -down particle pair

HF/free particle nodes BCS/unitary nodes
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Correlated nodes in a fermion gas: singlet pair of e-
winds around the box without crossing the node

Wavefunction along the winding

. ath
riTzri+5l—|—0]ﬁet, i=1,...,5 | p |
1
|
(;0 s _r_}.?-}!\)
| )/
| ”~
ol e ... A— I—— = / './
| |
. : HF
® ® \\ / \\ /
|
¥s | | N A Sed
= A | |
g-, 0 go x _2 0
(x1+x6)/2

HF crosses the node, BCS/pfaffian does not (supercond.)
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Four particle exchange: pair two-particle simultaneous
exchanges without node crossing

Exchange in each spin channel separately has to cross the node,
concerted both spin channels exchange can avoid the node

4 \
& * (X. Li, LM,'09)
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Ultracold unitary fermions: half of the particles in tight
but “dynamical” pairs, another half essentially free
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A few summaries and comments
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A few key points about QMC

Practical:

- systems with hundreds of electrons are feasible

- agreement with experiment within few % (problem cornered)

- sometimes “plain vanilla” single-determinant nodes very accurate

Fundamental:
- note: no ad hoc parameters, no Hubbard U or Stoner J, etc:
applicable to solids, nanosystems, BEC-BCS condensates ...

- 90-95 % of correlation is “bosonic”-like (within nodal domains),
efficiently captured by algebraically scaling methods

- fixed-node approx. is the only key issue: 5-10% of correlation —
enough accuracy for cohesion, gaps, optical excitations, etc

- 5-10% still important: magnetic effects, superconductivity, etc
Lubos_Mitas@ncsu.edu



QMC and its role in electronic structure of materials
(and computational science)

+ ) history of important benchmarks (eg, correlation energy
of homog. el. gas); universally applicable — ultracold atomic
condensates with short range attractive interaction, models, etc

- [+) so far computationally 100-1000 times slower than mainstream
— helped by easier parallelization and favorable scaling in # of e-

- ) hidden cost on human time (need to have not only the code
but further infrastructure to make construction of many-body
physics efficient —» almost nobody works in such detail)

+++) QMC produces not only numbers but also understanding
(unitary fermions insights, some more on friday talk)
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Challenges in QMC

Spectra:

- state by state calculations (band edges, band structure scan)
- subtle features (satelites, etc, difficult, costly)

- multi-state calculations (eg, so far exponential scaling)

Weakly bonded systems: difficult, energy resolution is a problem

lonic forces: - noise is a problem — possible but costly options:
- finite differences with correlated sampling
- Hellman-Feynman, all options costly
(but AIMD/DFT with QMC correction with evolving wave
function along the ionic path is surprisingly efficient, factor
of 2-3 on the top of AIMD! Grossman & Mitas PRL '05)

Spins: beyond collinear spin states, spin-orbit interactions
(symposium talk)
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Open Source QMC code QWalk (“Quantum Walk”)
www.qwalk.org

- molecules and solids (3D periodicity), 1D rings, other systems
(effective interactions, model systems, etc), tested on TMOs

- variety of basis (gaussian, Slater, PW, numerical, etc) or combination
- several types of correlated wavefunctions (CI, pfaffians)

- variety of methods (variational, fixed-node DMC, reptation, upper
bound for nonlocal operators, optimizations, etc)

- object-oriented code, C++, 50,000+ lines: GPL open source,
community (L. Wagner, M. Bajdich, J. Kolorenc, L.M. others)

- interfaces and converters from GAMESS, CRYSTAL, Gaussian,
SIESTA, (Qespresso in progress)
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Review papers:
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