How to predict the critical temperature of superconductors: An ab-initio perspective

E. K. U. Gross

Max Planck Institute of Microstructure Physics, Halle

HALLEA. SannaC. BersierF. EssenbergerA. LinscheidH. GlaweA. FlorisS. KurthN. LathiotakisM. LüdersM. Marques

CAGLIARI

S. Massidda C. Franchini

L'AQUILA

A. Continenza G. Profeta P. Cudazzo

- 1. What do we want to describe?
- 2. Warm-up exercise: Density functional theory of magnetism
- **3. Density functional theory for superconductors**
- 4. Results for simple metals
 - MgB₂
 - Li, K, Al under pressure
 - Pb revisited
 - CaC₆
 - H under extreme pressure
- 5. The superconducting order parameter in real space

6. Towards the description of pnictide superconductors

What do we want to describe: Phenomenology of the superconducting phase

Two essential properties

• Resistance drops to zero at T_c

• Meissner-Ochsenfeld-Effect

Secondary features

• Specific heat

Secondary features

• Energy gap in excitation spectrum

Standard theory: Bardeen – Cooper – Schrieffer (BCS)

For inhomogeneous superconductors, BCS takes the form of the <u>Bogoliubov- de Gennes equations:</u>

$$\left(-\frac{\hbar^2 \nabla^2}{2m} + v_{eff}(\mathbf{r}) - \mu \right) u_k(\mathbf{r}) + \int \Delta_{eff}(\mathbf{r}, \mathbf{r}') v_{eff}(\mathbf{r}') d^3 \mathbf{r}' = \varepsilon_k u_k(\mathbf{r})$$
$$\int \Delta_{eff}^*(\mathbf{r}, \mathbf{r}') u_k(\mathbf{r}') d^3 \mathbf{r}' - \left(-\frac{\hbar^2 \nabla^2}{2m} + v_{eff}(\mathbf{r}) - \mu \right) v_k(\mathbf{r}) = \varepsilon_k v_k(\mathbf{r})$$

$$\underline{\text{short-hand:}} \quad \begin{pmatrix} [\hat{h}_{\text{eff}} - \mu] & \hat{\Delta}_{\text{eff}} \\ \hat{\Delta}_{\text{eff}}^{+} & -[\hat{h}_{\text{eff}} - \mu] \end{pmatrix} \begin{pmatrix} u_k \\ v_k \end{pmatrix} = \varepsilon_k \begin{pmatrix} u_k \\ v_k \end{pmatrix}$$

$$\begin{split} \underline{\text{Mean fields}} & \mathbf{v}_{\text{eff}}\left(\mathbf{r}\right) = \mathbf{v}_{\text{lattice}}\left(\mathbf{r}\right) + \int \frac{e^{2}}{|\mathbf{r} - \mathbf{r}'|} \rho(\mathbf{r}') d^{3}\mathbf{r}' \\ & \uparrow \\ & \uparrow \\ & \text{Coulomb} \\ \text{interaction} \\ density \\ \rho(\mathbf{r}) = \sum_{\sigma=\uparrow\downarrow} \langle \hat{\psi}_{\sigma}^{+}(\mathbf{r}) \hat{\psi}_{\sigma}(\mathbf{r}) \rangle \\ \Delta_{\text{eff}}\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right) = \int \mathbf{W}_{\text{mod el}}\left(\mathbf{r}_{1}, \mathbf{r}_{2}, \mathbf{r}_{1}', \mathbf{r}_{2}'\right) \chi(\mathbf{r}_{1}', \mathbf{r}_{2}') d^{3}\mathbf{r}' d^{3}\mathbf{r}_{2}' \\ & \text{BCS model} \\ \text{interaction} \\ & \text{(from} \\ \text{Fröhlich)} \\ \hline \end{array}$$

General (model-independent) characterization of superconductors: Off-diagonal long-range order of the 2-body density matrix:

$$\rho^{(2)}(\mathbf{x}\mathbf{x}',\mathbf{y}\mathbf{y}') = \left\langle \hat{\psi}_{\downarrow}^{+}(\mathbf{x}')\hat{\psi}_{\uparrow}^{+}(\mathbf{x})\hat{\psi}_{\uparrow}(\mathbf{y})\hat{\psi}_{\downarrow}(\mathbf{y}')\right\rangle$$

$$\chi$$
 (r,r') = $\langle \hat{\psi}_{\uparrow}(r) \hat{\psi}_{\downarrow}(r') \rangle$

order parameter of the N-S phase transition

<u>BCS theory</u> describes the universal features that all (weakly coupled phonon-driven) superconductors have in common, e.g. universal ratio $\Delta_0 / (k_B T_c)$.

BCS theory is <u>not</u> able to make predictions of material-specific properties such as T_c .

<u>BCS theory</u> describes the universal features that all (weakly coupled phonon-driven) superconductors have in common, e.g. universal ratio $\Delta_0 / (k_B T_c)$.

BCS theory is <u>not</u> able to make predictions of material-specific properties such as T_c .

<u>Eliashberg theory</u> includes phonon degrees of freedom perfectly through $\alpha^2 F(\omega)$.

Electron-electron interaction not treated on same footing: Adjustable parameter μ*. <u>BCS theory</u> describes the universal features that all (weakly coupled phonon-driven) superconductors have in common, e.g. universal ratio $\Delta_0 / (k_B T_c)$.

BCS theory is <u>not</u> able to make predictions of material-specific properties such as T_c .

<u>Eliashberg theory</u> includes phonon degrees of freedom perfectly through $\alpha^2 F(\omega)$.

Electron-electron interaction not treated on same footing: Adjustable parameter μ*.

Quotations:

"If I want to know T_c of a superconducting material I ask my experimental colleague next door to measure it." (M. Fisher)

"In any known theory of superconductivity, T_c is the first fudge factor entering the theory" (D. Rainer)

DENSITY-FUNTIONAL THEORY OF THE NORMAL-CONDUCTING STATE

ESSENCE OF DENSITY-FUNTIONAL THEORY

- Every observable quantity of a quantum system can be calculated from the density of the system ALONE (Hohenberg, Kohn, 1964).
- The density of particles interacting with each other can be calculated as the density of an auxiliary system of non-interacting particles (Kohn, Sham, 1965).

Kohn-Sham Theorem (1965)

The ground state density of the interacting system of interest can be calculated as ground state density of non-interacting particles moving in an effective potential $v_s(r)$:

DENSITY-FUNTIONAL THEORY OF MAGNETIC SYSTEMS

Quantity of interest: Spin magnetization m(r)

In principle, Hohenberg-Kohn theorem guarantees that m(r) is a functional of the density: $m(r) = m[\rho](r)$. In practice, $m[\rho]$ is not known.

Include m(r) as basic variable in the formalism, in addition to the density $\rho(r)$.

DFT for spin-polarized systems

$$\hat{H}_{v,\vec{B}} = \hat{T} + \hat{W} + \int \hat{\rho}(r)v(r)d^3r - \int \hat{\vec{m}}(r)\cdot\vec{B}(r)d^3r$$

KS scheme

$$\left(-\frac{\nabla^2}{2m} + \left[\mathbf{v}(\mathbf{r}) + \mathbf{v}_{H}(\mathbf{r}) + \mathbf{v}_{xc}(\mathbf{r})\right] - \mu_{o}\sigma \cdot \left[\mathbf{B}(\mathbf{r}) - \mathbf{B}_{xc}(\mathbf{r})\right]\right) \phi_{j}(\mathbf{r}) = \epsilon_{j} \phi_{j}(\mathbf{r})$$

$\underline{B \longrightarrow 0 \text{ limit}}$

These equations do <u>not</u> reduce to the original KS equations for $B \rightarrow 0$ if, in this limit, the system has a finite m(r).

- 3 generations of approximations for E_{xc}
- 1. Local Density Approximation (LDA):

$$\mathbf{E}_{xc}[\rho] = \int d^{3}r \, \mathbf{e}_{xc}^{\text{hom}}(\rho(\mathbf{r}), \mathbf{m}(\mathbf{r}))$$

2. Generalized Gradient Approximation (GGA):

$$\mathbf{E}_{xc}[\rho] = \int d^{3}r \, g_{xc}(\rho, m, \nabla \rho, \nabla m...)$$

3. Orbital functionals (exact exchange, hybrids, meta-GGAs)

$$\mathbf{E}_{xc}[\boldsymbol{\rho}] = \mathbf{E}_{xc}[\boldsymbol{\varphi}_{1} \dots \boldsymbol{\varphi}_{N}]$$

DENSITY-FUNTIONAL THEORY OF THE SUPERCONDUCTING STATE

BASIC IDEA:

- Include order parameter, χ, characterising superconductivity as additional "density" L.N. Oliveira, E.K.U.G., W. Kohn, PRL 60, 2430 (1988)
- Include N-body density matrix, Γ, of the nuclei as additional "density"
 T. Kreibich, E.K.U.G., PRL 86, 2984 (2001)

Hamiltonian

$$\hat{H}_{e} = \hat{T}_{e} + \hat{W}_{ee} + \int \hat{\rho}(\mathbf{r}) v(\mathbf{r}) d^{3}r - \int d^{3}r \int d^{3}r' \left(\hat{\chi}(\mathbf{r},\mathbf{r}') \Delta^{*}(\mathbf{r},\mathbf{r}') + \text{H.c.} \right)$$

ANALOGY

"proximity effect"

Hamiltonian

$$\hat{H}_{e} = \hat{T}_{e} + \hat{W}_{ee} + \int \hat{\rho}(\mathbf{r}) v(\mathbf{r}) d^{3}r - \int d^{3}r \int d^{3}r' \left(\hat{\chi}(\mathbf{r},\mathbf{r}') \Delta^{*}(\mathbf{r},\mathbf{r}') + \text{H.c.} \right)$$

Hamiltonian

$$\hat{H}_{e} = \hat{T}_{e} + \hat{W}_{ee} + \int \hat{\rho}(\mathbf{r}) v(\mathbf{r}) d^{3}r - \int d^{3}r \int d^{3}r' \left(\hat{\boldsymbol{\chi}}(\mathbf{r},\mathbf{r}') \Delta^{*}(\mathbf{r},\mathbf{r}') + \text{H.c.} \right)$$
$$\hat{H}_{n} = \hat{T}_{n} + \int d^{N_{n}} R \hat{\Gamma}(\underline{\underline{R}}) W(\underline{\underline{R}})$$

$$\hat{\mathbf{H}} = \hat{\mathbf{H}}_{e} + \hat{\mathbf{H}}_{n} + \hat{\mathbf{U}}_{en}$$

<u>3 densities:</u>

$$\rho(\mathbf{r}) = \left\langle \sum_{\sigma=\uparrow\downarrow} \hat{\psi}_{\sigma}^{+}(\mathbf{r}) \hat{\psi}_{\sigma}(\mathbf{r}) \right\rangle \quad \text{electron density}$$

$$\chi(\mathbf{r},\mathbf{r}') = \left\langle \hat{\psi}_{\uparrow}(\mathbf{r}) \hat{\psi}_{\downarrow}(\mathbf{r}') \right\rangle \quad \text{order parameter}$$

$$\Gamma(\underline{\mathbf{R}}) = \left\langle \hat{\varphi}^{+}(\mathbf{R}_{1}) \hat{\varphi}^{+}(\mathbf{R}_{2}) \cdots \hat{\varphi}(\mathbf{R}_{1}) \hat{\varphi}(\mathbf{R}_{2}) \cdots \right\rangle$$

diagonal of nuclear N_n-body density matrix

Hohenberg-Kohn theorem for superconductors

$[v(r),\Delta(r,r'),W(\underline{\mathbb{R}})] \xleftarrow{1-1} [\rho(r),\chi(r,r'),\Gamma(\underline{\mathbb{R}})]$ Densities in thermal equilibrium

at finite temperature

Electronic KS equation

$$\left(-\frac{\nabla^2}{2}-\mu+\mathbf{v}_{\mathbf{s}}[\rho,\chi,\Gamma](\mathbf{r})\right)\mathbf{u}(\mathbf{r})+\int\Delta_{\mathbf{s}}[\rho,\chi,\Gamma](\mathbf{r},\mathbf{r}')\mathbf{v}(\mathbf{r}')\mathbf{d}^3\mathbf{r}'=\mathrm{Eu}(\mathbf{r})$$
$$\int\Delta_{\mathbf{s}}^*[\rho,\chi,\Gamma](\mathbf{r},\mathbf{r}')\mathbf{u}(\mathbf{r}')\mathbf{d}^3\mathbf{r}'-\left(-\frac{\nabla^2}{2}-\mu+\mathbf{v}_{\mathbf{s}}[\rho,\chi,\Gamma](\mathbf{r})\right)\mathbf{v}(\mathbf{r})=\mathrm{Ev}(\mathbf{r})$$

Nuclear KS equation

$$\left(\sum_{\alpha=1}^{N_n} -\frac{\nabla_{\alpha}^2}{2M_{\alpha}} + \mathbf{W}_{\mathbf{s}}[\rho,\chi,\Gamma](\underline{\mathbf{R}})\right) \psi(\underline{\mathbf{R}}) = \mathbf{E}\psi(\underline{\mathbf{R}})$$

3 KS potentials: $v_s \Delta_s W_s$ No approximation yet!"Exactification" of BdG mean-field eqs.

<u>KS theorem</u>: There exist functionals $v_s[\rho,\chi,\Gamma]$, $\Delta_s[\rho,\chi,\Gamma]$, $W_s[\rho,\chi,\Gamma]$, such that the above equations reproduce the exact densities of the interacting system In a solid, the ions remain close to their equilibrium positions:

$$W_{s}(\underline{\underline{R}}) = W_{s}(\underline{\underline{R}}_{0} + \underline{\underline{U}})$$

$$= W_{s}(\underline{\underline{R}}_{0}) + (\underline{\underline{\nabla}} W_{s})_{\underline{\underline{R}}_{0}} \cdot \underline{\underline{U}}$$

$$0 \text{ (because forces vanish at equilibrium positions)}$$

$$+ \frac{1}{2} \sum_{ij}^{3} \sum_{\mu\nu}^{N_{n}} (\partial_{i}^{\mu} \partial_{j}^{\nu} W_{s}(\underline{\underline{R}})) |_{\underline{\underline{R}}_{0}} U_{i}^{\mu} U_{j}^{\nu} + \cdots$$

$$\Rightarrow \hat{H}_{n,KS} = \cdots = \sum_{q} \Omega_{q} \hat{\underline{b}}_{q}^{+} \hat{\underline{b}}_{q} + O(U^{3})$$

q

$$v_{s} = v_{ext} + v_{en}^{H} + v_{ee}^{H} + v_{xc}$$
$$= o - Z \int d^{3}R \frac{N(R)}{|r-R|} + \int d^{3}r' \frac{\rho(r')}{|r-r'|} + \frac{\delta F_{xc}}{\delta \rho(r)}$$

$$\Delta_{s} = \Delta_{ext} + \Delta^{H} + \Delta_{xc}$$
$$= o + \frac{\chi(r,r')}{|r-r'|} + \frac{\delta F_{xc}}{\delta \chi^{*}(r,r')}$$

$$W_{s} = W_{ext} + W_{nn} + W_{en}^{H} + W_{xc}$$
$$= o + \frac{1}{2} \sum_{\alpha\beta}^{N_{n}} \frac{Z_{\alpha}Z_{\beta}}{|R_{\alpha} - R_{\beta}|} - \sum_{\alpha}^{N_{n}} \int \frac{\rho(r)}{|r - R_{\alpha}|} d^{3}r + \frac{\delta F_{xc}}{\delta \Gamma(R)}$$

CONSTRUCTION OF APPROXIMATE F_{xc} : $\hat{H} = \hat{H}_{o} + \hat{H}_{1}$

$$\hat{H}_{o} = \sum_{\sigma} \int \hat{\psi}_{\sigma}^{+}(r) \left(-\frac{\nabla^{2}}{2} - \mu + v_{s}(r, R_{=o}) \right) \hat{\psi}_{\sigma}(r) d^{3}r$$
$$- \int d^{3}r \int d^{3}r' \left[\hat{\psi}_{\uparrow}(r) \hat{\psi}_{\downarrow}(r') \Delta_{s}^{*}(r, r') + \text{H.c.} \right] + \sum_{q} \Omega_{q} \hat{b}_{q}^{+} \hat{b}_{q}$$

develop diagrammatic many-body perturbation theory on the basis of the H_0 -propagators:

G_s normal electron propagator (in superconducting state)

anomalous electron propagators

 \bigwedge D_s phonon propagator

Immediate consequence:

$$\mathbf{F}_{xc} = \mathbf{F}_{xc}^{ph} + \mathbf{F}_{xc}^{el}$$

all diagrams containing \mathbf{D}_{s} all others diagrams

Phononic contributions

First order in phonon propagator:

$$\begin{split} F_{xc}^{ph} \left[n, \chi, \Gamma \right] &= \underbrace{\qquad} + \underbrace{\qquad} \\ &= -\frac{1}{2} \sum_{ij} \int d\Omega \alpha^2 F_{ij}(\Omega) \frac{\Delta_i \Delta_j^*}{E_i E_j} \left(I(E_i, -E_j, \Omega) - I(E_i, E_j, \Omega) \right) \\ &- \frac{1}{2} \sum_{ij} \int d\Omega \alpha^2 F_{ij}(\Omega) \left[\left(1 + \frac{\left(\in_i - \mu\right) \left(\in_j - \mu\right)}{E_i E_j} \right) I(E_i, E_j, \Omega) \right. \\ &+ \left(1 - \frac{\left(\in_i - \mu\right) \left(\in_j - \mu\right)}{E_i E_j} \right) I(E_i, -E_j, \Omega) \right] \end{split}$$

Input to $\mathbf{F}_{\mathbf{xc}}^{\mathbf{ph}}$: Full k,k' resolved Eliashberg function

$$\alpha^{2} F_{nk,n'k'}(\Omega) = \sum_{\lambda q} \left| g_{nk,n'k'}^{\lambda q} \right|^{2} \delta \left(\Omega - \Omega_{\lambda q} \right)$$

Phononic contributions

First order in phonon propagator:

$$\begin{split} F_{xc}^{ph} \Big[n, \chi, \Gamma \Big] &= \underbrace{\qquad} + \underbrace{\qquad} \\ &= -\frac{1}{2} \sum_{ij} \int d\Omega \alpha^2 F_{ij}(\Omega) \frac{\Delta_i \Delta_j^*}{E_i E_j} \Big(I(E_i, -E_j, \Omega) - I(E_i, E_j, \Omega) \Big) \\ &- \frac{1}{2} \sum_{ij} \int d\Omega \alpha^2 F_{ij}(\Omega) \left[\left(1 + \frac{(\epsilon_i - \mu)(\epsilon_j - \mu)}{E_i E_j} \right) I(E_i, E_j, \Omega) \right. \\ &+ \left(1 - \frac{(\epsilon_i - \mu)(\epsilon_j - \mu)}{E_i E_j} \right) I(E_i, -E_j, \Omega) \right] \end{split}$$

Input to $\mathbf{F}_{\mathbf{xc}}^{\mathbf{ph}}$: Full k,k' resolved Eliashberg function

$$\alpha^{2}F_{nk,n'k'}(\Omega) = \sum_{\lambda q} \left|g_{nk,n'k'}^{\lambda q}\right|^{2} \delta\left(\Omega - \Omega_{\lambda q}\right)$$

Calculated ab-initio with ESPRESSO code

Construction of LDA-type functional for purely electronic correlations

S. Kurth, M. Marques, M. Lüders, E.K.U.G., PRL <u>83</u>, 2628 (1999)

STRATEGY

- Calculate E_{xc} for homogeneous superconductor
- Then use the result as LDA for inhomogeneous system

Normal state LDA:

Given an approximation of $e_{xc}^{hom}(\rho)$ (xc energy per volume) $E_{xc}^{LDA}[\rho] := \int d^{3}r e_{xc}^{hom}(\rho) \Big|_{\rho = \rho(r)}$

LDA for superconductors: Given an approximation of $e_{xc}^{hom}[\rho, \chi(k)]$

Note:
$$e_{xc}^{hom}[\rho, \chi(k)]$$
 is already a FUNCTIONAL
 $E_{xc}^{LDA}[\rho, \chi] := \int d^{3}R \ e_{xc}^{hom}[\rho(R), \chi_{w}(R,k)]$

where χ_w is the Wigner transform of the nonlocal order parameter

$$\chi(\mathbf{r},\mathbf{r}') = \chi(\mathbf{R},\mathbf{r}-\mathbf{r}') = \int \frac{d^3k}{(2\pi)^3} \chi_w(\mathbf{R},\mathbf{k}) e^{i\mathbf{k}(\mathbf{r}-\mathbf{r}')}$$

$$\frac{\uparrow}{2}$$

<u>Calculation of $e_{xc}^{hom}[\rho, \chi(k)]$ by diagrammatics</u>

unperturbed system: uniform non-interacting superconductor

$$\hat{H}_{o} = \hat{T} - \mu \hat{N} + \int d^{3}k \left(\hat{\chi}(k) \Delta^{*}(k) + \hat{\chi}^{+}(k) \Delta(k) \right)$$

<u>**perturbation</u>** = W_{Clb} (bare Coulomb interaction)</u>

many-body perturbation theory yields

Complete RPA resummation of all normal and anomalous bubble diagrams

$$\begin{split} F_{C}^{\text{RPA}} &= \frac{1}{\beta} \sum_{q,v_{n}} \log \{ 1 - w(q) \cdot \left[\Pi_{G}(q,v_{n}) + \Pi_{F}(q,v_{n}) \right] \} + w(q) \cdot \left[\Pi_{G}(q,v_{n}) + \Pi_{F}(q,v_{n}) \right] \\ \text{where} \quad w(q) &= \frac{4\pi}{q^{2}} \quad \text{and} \quad \Pi_{G}(q,v_{n}) \equiv \bigwedge \Pi_{F}(q,v_{n}) \equiv \bigwedge \Pi_{F}(q,v_{n}) = \bigwedge \Pi_{F}(q,v_{n}) = \bigwedge \Pi_{G}(q,v_{n}) = \bigwedge \Pi_{F}(q,v_{n}) = \bigwedge \Pi_{F}(q,v_{n})$$

with

Contributions to condensation energy at $r_s = 1$

Improved approximation for the purely electronic contributions

$$F_{xc}^{ee}[\rho, \chi] = \longleftrightarrow + F_{xc}^{GGA}[\rho]$$
RPA-screened electron-electron interaction of the **inhomogeneous system**

Crucial point: NO ADJUSTABLE PARAMETERS

To separate the normal (band-structure) energy scale from the superconducting energy scale, the Bogoliubov-KS equations are decomposed into:

$$\begin{pmatrix} -\frac{\nabla^2}{2} + \mathbf{v}_{s}(\mathbf{r}) \end{pmatrix} \phi_{nk}(\mathbf{r}) = \epsilon_{nk} \phi_{nk}(\mathbf{r})$$

$$\Delta_{nk} = -\frac{1}{2} \sum_{n'k'} \mathbf{w}_{eff}(\mathbf{nk}, \mathbf{n'k'}) \frac{ \tanh\left(\frac{\beta}{2} \sqrt{\left(\epsilon_{n'k'} - \mu\right)^2 + \left|\Delta_{n'k'}\right|^2}\right)}{\sqrt{\left(\epsilon_{n'k'} - \mu\right)^2 + \left|\Delta_{n'k'}\right|^2}} \Delta_{n'k'}$$

 $w_{eff}(nk, n'k') = \int d^{3}r \int d^{3}r' \int d^{3}x \int d^{3}x \, \phi_{nk}^{*}(r) \phi_{n(-k)}^{*}(r') \, w_{eff}(r, r', x, x') \, \phi_{n'k'}(x) \phi_{n'(-k')}(x')$

$$W_{eff}(r, r', x, x') = W_{xc}^{el}(r, r', x, x') + W_{xc}^{ph}(r, r', x, x')$$

with
$$W_{xc}^{ph/el} = \frac{\delta^2 F_{Hxc}^{ph/el}[\rho, \chi]}{\delta \chi^*(r, r') \delta \chi^*(x, x')} \Big|_{\chi=0}$$

Transition temperatures from DFT calculation

	Al	Nb	Ta	Pb	Cu
DFT	0.9	9.5	3.7	6.9	<0.01
Experimental	1.18	9.3	4.5	7.2	-

Gap at zero temperature

	Al	Nb	Ta	Pb	Cu
DFT	0.14	1.74	0.63	1.34	-
Experimental	0.179	1.55	0.69	1.33	-

M. Lüders et al, PRB <u>72</u>, 024545 (2005), M. Marques et al, PRB <u>72</u>, 024546 (2005)

Phonon-only transition temperatures

	Al	Nb	V	Ta	Pb	Cu
DFT	7.10	23.0	34.2	11.7	12.8	0.055
Eliashberg	9.75	24.7	36.4	14.0	12.2	0.065

DFT with $W_{xc}^{el}(r,r',x,x') = 0$ Eliashberg with $\mu^*=0$

Confirmation that retardation effects are fully included in the DFT framework

 $T_c \propto M^{-\alpha}$ **Isotope effect:**

	Calculation	s Experiment
Pb	0.47	0.47
Мо	0.37	0.33

The deviations from BCS value α=0.5 are correctly described

Jump of specific heat at T_c

	Theory	Experiment
Pb	2.93	3.57 - 3.71
Nb	2.87	2.8 - 3.07
Ta	2.64	2.63
Al	2.46	2.43

Gap $\Delta_n(\mathbf{k})$ is a function of **3D** k-vector for each band n.

How can one visualize the gap?

 a) Define surface S_n(E) = {k : ε_n(k) = E}. In particular: S_n(E_F) = Fermi surface →Plot the values of Δ_n(k) on S_n(E) by color coding. **Gap** $\Delta_n(k)$ is a function of **3D** k-vector for each band n.

How can one visualize the gap?

- a) Define surface S_n(E) = {k : ε_n(k) = E}. In particular: S_n(E_F) = Fermi surface →Plot the values of Δ_n(k) on S_n(E) by color coding.
- b) Plot $\Delta_n(E)$ as function of E, where for each E the gap values $\Delta_n(k)$ are plotted for a large random set of $k \in S_n(E)$

Gap as a function of energy, Nb

$$\begin{pmatrix} -\frac{\nabla^2}{2} + \mathbf{v}_{s}(\mathbf{r}) \end{pmatrix} \boldsymbol{\phi}_{nk}(\mathbf{r}) = \boldsymbol{\epsilon}_{nk} \boldsymbol{\phi}_{nk}(\mathbf{r})$$

$$\boldsymbol{\Delta}_{nk} = -\frac{1}{2} \sum_{n'k'} \mathbf{w}_{eff}(\mathbf{nk}, \mathbf{n'k'}) \frac{ \tanh\left(\frac{\beta}{2}\sqrt{\left(\boldsymbol{\epsilon}_{n'k'} - \boldsymbol{\mu}\right)^2 + \left|\boldsymbol{\Delta}_{n'k'}\right|^2}\right)}{\sqrt{\left(\boldsymbol{\epsilon}_{n'k'} - \boldsymbol{\mu}\right)^2 + \left|\boldsymbol{\Delta}_{n'k'}\right|^2}} \boldsymbol{\Delta}_{n'k'}$$

$$\begin{pmatrix} -\frac{\nabla^2}{2} + \mathbf{v}_{s}(\mathbf{r}) \end{pmatrix} \boldsymbol{\phi}_{nk}(\mathbf{r}) = \boldsymbol{\epsilon}_{nk} \boldsymbol{\phi}_{nk}(\mathbf{r})$$

$$\boldsymbol{\Delta}_{nk} = -\frac{1}{2} \sum_{n'k'} \mathbf{w}_{eff}(\mathbf{nk}, \mathbf{n'k'}) \frac{ \tanh\left(\frac{\beta}{2}\sqrt{\left(\boldsymbol{\epsilon}_{n'k'} - \boldsymbol{\mu}\right)^2 + \left|\boldsymbol{\Delta}_{n'k'}\right|^2}\right)}{\sqrt{\left(\boldsymbol{\epsilon}_{n'k'} - \boldsymbol{\mu}\right)^2 + \left|\boldsymbol{\Delta}_{n'k'}\right|^2}} \boldsymbol{\Delta}_{n'k'}$$

w^{ph}_{eff} (nk, n'k') strongly attractive, short-ranged

$$\begin{pmatrix} -\frac{\nabla^2}{2} + \mathbf{v}_{s}(\mathbf{r}) \end{pmatrix} \boldsymbol{\phi}_{nk}(\mathbf{r}) = \boldsymbol{\epsilon}_{nk} \boldsymbol{\phi}_{nk}(\mathbf{r})$$

$$\boldsymbol{\Delta}_{nk} = -\frac{1}{2} \sum_{n'k'} \mathbf{w}_{eff}(\mathbf{nk}, \mathbf{n'k'}) \frac{ \tanh\left(\frac{\beta}{2}\sqrt{\left(\boldsymbol{\epsilon}_{n'k'} - \boldsymbol{\mu}\right)^2 + \left|\boldsymbol{\Delta}_{n'k'}\right|^2}\right)}{\sqrt{\left(\boldsymbol{\epsilon}_{n'k'} - \boldsymbol{\mu}\right)^2 + \left|\boldsymbol{\Delta}_{n'k'}\right|^2}} \boldsymbol{\Delta}_{n'k'}$$

$$\begin{split} w_{eff}(nk,n'k') &= \int d^{3}r \int d^{3}r' \int d^{3}x \int d^{3}x' \phi_{nk}^{*}(r) \phi_{n(-k)}^{*}(r') w_{eff}(r,r',x,x') \phi_{n'k'}(x) \phi_{n'(-k')}(x') \\ w_{eff}(r,r',x,x') &= w_{xc}^{el}(r,r',x,x') + w_{xc}^{ph}(r,r',x,x') \end{split}$$

 w_{eff}^{ph} (nk, n'k') strongly attractive, short-ranged w_{eff}^{el} (nk, n'k') repulsive, very long-ranged

2-D σ -bonding hole pockets **3-D** π and π^* Fermi surfaces

Α

π

H

Fermi Surface of MgB₂

Specific heat of MgB₂

MgB₂

Anisotropy in MgB2: effects on T_c and Δ

MgB2	Tc (K) (DFT)	Tc (K) (exp)	Δ (meV), (DFT)	Δ (meV), (exp)
Coulomb	36 5	38.7	σ=7.3	σ = 7.1
RPA-ME	50.5	30.4	$\pi = 2.6$	$\pi = 2.9$
El-ph	20.9		2.0	
Averaged	20.0		3.0	
Coulomb	50.2		$\sigma = 9.4$	
averaged	50.2		$\pi = 1.5$	

- El-ph interaction anisotropy: increases Tc
- Coulomb interaction anisotropy: decreases Tc

A. Floris, A. Sanna, M. Lüders, G. Profeta, N.N. Lathiotakis, M.A.L. Marques, C. Franchini, E.K.U. Gross, A. Continenza, S. Massidda, Physica C 456, 45 (2007)

Li and Al under high pressure

Calculated and experimental critical temperatures for fcc-Al as a function of pressure.

Blue circles represent the ab initio SCDFT values, green squares are the semi-empirical McMillan results (with $\mu^* = 0.13$).

Calculated and experimental critical temperatures for fcc-Li as a function of pressure. Blue circles: SCDFT results (dashed part: fcc structure unstable);

Green full squares: McMillan's formula with $\mu^* = 0.13$;

Green empty squares: McMillan's formula with $\mu^* = 0.22$.

Vertical dashed lines indicate the structural transition pressures for Li (experimental). Inset: e-ph coupling constant λ vs pressure in GPa.

G. Profeta et al, Phys. Rev. Lett. <u>96</u>, 047003 (2006)

Superconducting gap Δ as function of temperature for compressed fcc Li

WHY ARE THE TWO MATERIALS DIFFERENT?

Upper panel: phonon dispersion of Li along the X-K- Γ line, at several different pressures, for the lower frequency mode. (Frequencies below the zero axis denote imaginary values.) Lower panel: electron-phonon coupling $\lambda_{q;1}$ and phonon line-width $\gamma_{q;1}$.

Prediction: T_c rises with pressure

A. Sanna, C. Franchini, A. Floris, G. Profeta, N.N. Lathiotakis, M. Lüders, M.A.L. Marques, E.K.U. Gross, A. Continenza and S. Massidda, Phys. Rev. B 73, 144512 (2006).

Analysis of K under pressure

sp to d transfer at E_F under pressure

Pb revisited

Fermi surface

Fermi surface

$$\lambda_{_{nk}} = \sum_{_{n'k',\nu}} \left| g_{_{nk,n'k'}}^{\nu} \right|^2 \delta(\epsilon_{_{nk}} - E_{_F}) \delta(\epsilon_{_{n'k'}} - E_{_F}) / \Omega_{_{k'-k}}^{\nu}$$

Gap on Fermi surface

Pb (Gap at T = 0.01 K)

History:

Graphite doped with K (1965), Na (1986), Li (1989): $T_c \approx 1 K$

Graphite doped with Ca, Yb (2005):

 CaC_6 : $T_c = 11.5K$, YbC_6 : $T_c = 6.5K$

How does hydrogen behave under extreme pressure?

• Metallic phase?

• High-T_c superconductor?

N.W. Ashcroft (1968); C.F. Richardson and N.W. Ashcroft, PRB (1996), K.A. Johnson and N.W. Aschcroft, Nature (2000); N.W. Ashcroft, J. Phys. C (2004)

The idea comes from Jupiter:

- 90% of Jupiter's mass is hydrogen
- extremely high magnetic field (suggesting large circulating currents)

Calculated phase diagram of hydrogen

Pressure (GPa)

Calculated phase diagram of hydrogen

Pressure (GPa)

Molecular phase (Cmca) stable until ~ 500 GPa

C.J. Pickard R.J. Needs, Nature Physics **3**, 473 (2007)

Calculated phase diagram of hydrogen

Pressure (GPa)

Molecular phase (Cmca) stable until ~ 500 GPa

C.J. Pickard R.J. Needs, Nature Physics **3**, 473 (2007)

Band structure

Band-overlap metallization found at P=400 GPa

M. Städele, R.M. Martin, PRL 84, 6070 (2000)

DOS at 414 GPa

FS at 414 GPa

Three types of vibrational modes:

phononic

libronic

vibronic

 $\alpha^2 F(\Omega)$ at 414 (solid line) and 462 (dashed line) GPa.

 $\alpha^2 F(\Omega)$ at 414 (solid line) and 462 (dashed line) GPa.

 $\alpha^2 F(\Omega)$ at 414 (solid line) and 462 (dashed line) GPa.

 $\alpha^2 F(\Omega)$ at 414 (solid line) and 462 (dashed line) GPa.

Hydrogen under extreme pressure

Predictions:

- Three-gap superconductivity
- Increase of T_c with increasing P until $T_c \sim 242$ K at 450 GPa

P. Cudazzo, G. Profeta, A. Sanna, A. Floris, A. Continenza, S. Massidda, E.K.U.G., PRL <u>100</u>, 257001 (2008)

Correlation of T_c with bonding properties (localization of σ charges)

- CaBeSi: LiBC:
- $T_c = 0.4 \text{ K}$ (experiment and calculation) CaBeB: $T_c = 3.1 \text{ K}$ (calculation) MgB₂: $T_c = 39.5 \text{ K}$ (experiment and calculation) $T_c = 75 \text{ K}$ (calculation: Picket et al)

σ charge in CaBeSi vs MgB₂

C. Bersier, A. Floris, A. Sanna, G. Profeta, A. Continenza, EKUG, S. Massidda, Phys. Rev. B 79, 104503 (2009)

In MgB₂ much stronger σ charge localization than in CaBeSi

Ab-initio calculation of SC order parameter χ(r,r') for MgB2

$$\chi(\mathbf{r,r'}) \equiv \chi(\mathbf{R,s})$$

$$R = (r+r')/2, s = r-r'$$

χ(**R**,s) as function of **R** for fixed s.

$\chi(\mathbf{R},\mathbf{s})$ as function of s for fixed R (at center of B hexagon)

Description of pnictide superconductors

- λ too small to allow for phononic mechanism
- paramagnon suspected to be responsible for mechanism of superconductivity

Spin-dependet effective interaction

Use Λ as effective interaction in the gap equation

SUMMARY of DFT for Superconductors

Coulomb and el-ph interactions enter the theory on the same footing

no adjustable parameters, such as μ^* , are used

TRUE AB-INITIO PREDICTION OF T_c AND Δ

Thanks.

Deutsche Forschungsgemeinschaft DFG

SPP 1145 SFB 658