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•   Exact  factorisation of electronic 
     and nuclear degrees of freedom 
 
•   Exact time-dependent PES 
 

•   An alternative to Tully surface 
     hopping   
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Full Schrödinger equation: ( ) ( )R,rER,rĤ   Ψ=Ψ

convention: Greek indices → nuclei 
Latin indices → electrons 

Hamiltonian for the complete system of Ne electrons with coordinates                              
          and Nn nuclei with coordinates          , masses 
M1 ··· MNn  and charges Z1 ··· ZNn. 
( ) rrr

eN1 ≡ ( ) RRR
nN1 ≡



Born-Oppenheimer approximation 

.Rfor each fixed nuclear configuration 

( ) ( ) ( )rΦ             rΦ)R,r(V̂)r(V̂)r(Ŵ)r(T̂     
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Ren

ext
eeee =+++ ( )R BO∈

solve 

( ) ( ) ( )RχrR,rΨ    
BOBO

R ⋅Φ=BO

Make adiabatic ansatz for the complete molecular wave function: 

and find best χBO   by minimizing    <ΨBO | H | ΨBO >  w.r.t.  χBO : 



Nuclear equation 
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is a geometric phase 

In this context, potential energy surfaces                    and the Berry potential                   
are APPROXIMATE concepts, i.e. they follow from the BO approximation.  
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is a geometric phase 

In this context, potential energy surfaces                    and the Berry potential                   
are APPROXIMATE concepts, i.e. they follow from the BO approximation.  
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“Berry phases arise when the world is approximately separated into a system and  
  its environment.”  



GOING BEYOND BORN-OPPENHEIMER 

Standard procedure: 

( ) ( ) ( )∑ ⋅=
J

JK,
BO

J,RK RχrΦR,rΨ    

and insert expansion in the full Schrödinger equation → standard 
non-adiabatic coupling terms from Tn acting on   ( ).BO

J,R rΦ  

• χJ,K depends on 2 indices: → looses nice interpretation as  
                                                   “nuclear wave function” 
•  In systems driven by a strong laser, many BO-PES can be coupled. 

Drawbacks: 

Expand full molecular wave function in complete set of BO states: 
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Potential energy surfaces are absolutely essential 
in our understanding of a molecule 
.... and can be measured by femto-second pump-probe spectroscopy:  
     Zewail, J. Phys. Chem. 104, 5660, (2000) 



Na++ I-   

Na + I 

The wavepacket continues sloshing about on the 
excited surface with a small fraction leaking out each 
time the avoided crossing is encountered. 

 Example: NaI femtochemistry 

Nuclear wavepacket is created by a femto-second laser 
pulse on the repulsive wall of the excited surface.  
 
As it keeps moving on this surface it encounters the 
avoided crossing at 6.93 Ǻ. At this point some 
molecules will dissociate into Na + I, and some 
will keep oscillating on the upper adiabatic surface.  
 



I. Probing Na atom products: 
 
 Steps in the production of Na 

as more of the wavepacket 
leaks out each vibration into 
the Na - I channel.  



Effect of tuning pump wavelength (exciting to 
different points on excited surface) 

300 

311 

321 

339 

λpump/nm 

Different periods 
indicative of anharmonic 
potential 

T.S. Rose, M.J. Rosker, A. Zewail, JCP  91, 7415 (1989) 



GOAL:  Show that                                              can be made EXACT   
 
 
•  Concept of EXACT potential energy surfaces (both static and TD) 
 

•  Concept of EXACT Berry phase (both static and TD) 
 
 
 

       

( ) ( ) ( )RχrR,rΨ    ⋅Φ= R



Theorem I 

The exact solutions of 

can be written in the form 

( ) ( )R,rER,rĤ   Ψ=Ψ

( ) ( ) ( )RχrR,rΨ    ⋅Φ= R

where ( ) 1 rΦrd
2

 =∫ R for each fixed .R

First mentioned in: G. Hunter, Int. J.Q.C. 9, 237 (1975) 



Immediate consequences of Theorem I: 

1. The diagonal            of the nuclear Nn-body density matrix is identical 
with 

( )RΓ
( ) 2

 Rχ

⇒ in this sense,           can be interpreted as a proper nuclear wavefunction. ( )Rχ

proof: ( ) ( ) ( ) ( ) ( ) 222

R
2

   RχRχ rΦrd R,rΨrdRΓ === ∫∫
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2.            and           are unique up to within the “gauge transformation” ( )Rχ  ( )rΦ  R

( ) ( ) ( )rΦe:rΦ~    R
Riθ

R
 = ( ) ( ) ( )Rχe:Rχ~    

Riθ  −=



proof: Let          and           be two different representations of an exact eigenfunction 
Ψ i.e. 

χ⋅φ ~~
χ⋅φ
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Eq.  ( )



−∇−++++ ∑

nN

ν

2
νν

ν
en

ext
eeee Ai

2M
1V̂V̂ŴT̂
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Theorem II: satisfy the following equations: ( ) ( )  R r   and  RΦ χ



Eq.  ( )
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Theorem II: satisfy the following equations: ( ) ( )  R r   and  RΦ χ

Exact PES 

Exact Berry potential 



• Eq.  and  are form-invariant under the “gauge” transformation 

( )ΦeΦ~Φ Riθ=→

( ) ( ) ( )RR~R    =∈∈→∈

( )χeχ~χ Riθ−=→

( )RθAA~A νννν ∇+=→

•  is a (gauge-invariant) geometric phase 
  the exact geometric phase 

( ) ∫ ⋅=
C 

RdA:Cγ


Exact potential energy surface is gauge invariant.  

OBSERVATIONS: 

• Eq.  is a nonlinear equation in 
• Eq.  contains              ⇒ selfconsistent solution of  and  required 

 
 
 
 
 
 

( )rΦR

( )Rχ

• Neglecting the           terms in , BO is recovered 
• There is an alternative, equally exact, representation  
 (electrons move on the nuclear energy surface) 

( ) ( )rχRΦΨ    r=
νM1



How do the exact PES look like? 
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MODEL 

Nuclei (1) and (2) are heavy: Their positions are fixed 

S. Shin, H. Metiu, JCP 102, 9285 (1995), JPC 100, 7867 (1996)  







( ) ( ) ( ) ( )   
*
R RA R dr r  i  rν ν= Φ − ∇ Φ∫

( ) ( ) ( ) 

  
i RR : e Rθχ = χ

( ) ( ) ( )   R  r r,R / RΦ = Ψ χ

Exact Berry connection  

Insert: 

( ) ( ) ( ){ } ( )    

2*
νA R Im dr r,R  r,R / Rν ν= Ψ ∇ Ψ χ −∇ θ∫

( ) ( ) ( ) ( )    

2
A R J R / R Rν ν ν= χ −∇ θ

with the exact nuclear current density Jν 



Time-dependent case 



Time-dependent Schrödinger equation 
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Hamiltonian for the complete system of Ne electrons with coordinates                              
          and Nn nuclei with coordinates          , masses 
M1 ··· MNn  and charges Z1 ··· ZNn. 
( ) rrr

eN1 ≡ ( ) RRR
nN1 ≡



Theorem T-I 

The exact solution of 

can be written in the form 

where 

( ) ( ) ( )   ti r,R, t H r,R, t  r,R, t∂ Ψ = Ψ

( ) ( ) ( )   Rr,R, t r, t  R, tΨ = Φ χ

( ) 

2

Rdr r, t 1Φ =∫ for any fixed             . R, t

A. Abedi, N.T. Maitra, E.K.U.G., PRL 105, 123002 (2010) 



Eq.  
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2M

1
t

ext
nnn

N

ν

2
νν

ν

   

n

 ∂=







∈++++∇−∑

Theorem T-II 

( ) ( )t,R  and  t,r   R χΦ satisfy the following equations 

A. Abedi, N.T. Maitra, E.K.U.G., PRL 105, 123002 (2010) 
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EXACT time-dependent potential energy surface 

EXACT time-dependent 
Berry connection 

( ) ( ) ( )     
*

ν ν  A R, t i r,t r, t dr= − Φ ∇ Φ∫ R R



Example:   H2
+  in  1D in strong laser field 

exact solution of ( ) ( ) :tR,r,Ψ HtR,r,Ψi   t =∂

Compare with: 
 
• Hartree approximation: 
 

• Standard Ehrenfest dynamics 
 

• “Exact Ehrenfest dynamics” where the forces on the nuclei are 
    calculated from the exact TD-PES 

Ψ(r,R,t) = χ(R,t) ·φ(r,t) 



The internuclear separation < R>(t) for the intensities  
I1 = 1014W/cm2 (left) and I2 = 2.5 x 1013W/cm2  (right)  



 
Dashed:  I1 = 1014W/cm2 ;  solid: I2 = 2.5 x 1013W/cm2   

Exact time-dependent PES 



Second TD example: Molecular motion without  
laser, but initial state is a wavepacket  
(i.e. not an eigenstate) 















































Shin-Metiu model 







New MD scheme: 
Perform classical limit of the nuclear equation, but retain 
the exact forces from the exact electronic equation 



( ) ( ) ( )
i S R,t

R, t e R, tχ = χ

( ) ( )( )
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2
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 χ → δ −
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0R
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χ


Classical limit 

Nuclear wavefunction 

Hence 
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Expand the exact electronic wave function in the adiabatic basis: 

Insert this in the (exact) electronic equation of motion: 

in the classical limit: 

( ) ( )2
R k R kc R, t , c R, t 0∇ ∇ →

i.e. in this limit the  ck(R,t)  become independent of  R. 
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In practice we solve the following equations: 

and classical EoM for the nuclear Hamiltonian: ( )
2

R
N eff

PH V
2M

= +



Shin-Metiu model 





Summary: 
 
•                                                  is exact  
 
•   Eqs. of motion for                                         lead to   
 
     --- exact potential energy surface 
     --- exact Berry connection  
    
    both in the static and the time-dependent case 
 
•   TD-PES useful to interpret different dissociation meachanisms 
 

•   when few PES are involved: Jumps resembling surface hopping 
 
•   mixed quantum classical algorithm with “non-stochastic  
     surface hopping” 

( ) ( ) ( )RχrR,rΨ    ⋅Φ= R

( ) ( )  r   and  χ RΦR
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