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DISPERSION INTERACTIONS 
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Importance of non-pairwise-additive parts of van der Waals 
interaction between polarizable anisotropic nanostructures 

(graphene, nanotubes, proteins, etc). 

RPA+Response from electron “Continuum Mechanics” ⇒vdW

High level theory such as Lifshitz (macro) or RPA (micro)

Simple pairwise models of dispersion (van der Waals) interaction

vdW-DF theory (Langreth et al)  

Recent review: Dobson + Gould, J Phys Cond Matt 24 073201  (2012) 

Some issues concerning 



DIPOLE-DIPOLE, INDUCTION AND 
DISPERSION ENERGIES
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vdW betw. spherical atoms: fluctuation approach
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Electromagnetic retardation 
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c
Above treatments assumed 
instantaneous Coulomb 
interaction. In fact there is a 
delay  τlight ≈ R/c

If τlight >> τel resp, then  the original 
random dipole has decayed by the 
time a return signal arrives, 
resulting in a smaller attractive 
energy.  

c

R

End result is to replace ω in 
previous results by 1/τlight so that 

retarded regime 1 2
7

cE
R

α α
≈ −

Condition for this to occur:

R >> cτel resp
≈ (3.108)(2π.10-15) ≈ 2.10-6 m

Treat non-retarded case from here on

Retarded case 
generally known as 
“Casimir effect”: 
can get from e.m. 
ZP energy.



vdW attraction from coupled plasmons
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Zero point 
plasmon energy:

ZP plasmon method works also for large systems where zero energy
denominators make perturbation theory difficult. See Langbein’s book 1974. 

Toy version of the theory

A more rigorous method, ACF/FDT, generalizes this approach: 



ORIGIN OF VDW (DISPERSION) FORCE
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d

A correlation effect, highly nonlocal so LDA & GGA FAIL

Get from 2nd order perturbation theory (for small systems)
Or via theory of response (polarisability, coupled plasmons)

Weak but ubiquitous - additional to covalent, ionic bonds
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Static vs. Dynamic  e- density distortions
as the source of vdW interaction

+ +

+ +

Static distortion:  Allen +Tozer, J. 
Chem. Phys. 117, 11113 (2002);

R Both distortions strongly R dependent
Moves electrons toward other atom
Requires wavefunction to 2nd order in W12

Directly causes Feynman-vdW coulomb 
force on nuclei: See Allen & Tozer JCP ‘02

NOT direct Coulomb interaction dn1*W12*dn2

+ +
Dynamic (ZP+Ind) distortions:
Initiating ZP distortion NOT R dependent

Moves electrons away from initial distortion

Needs (TD) wavefunct. to 1st order in W12

Gives total energy change of O(W12
2)

IS direct Coulomb interaction dn1*W12*dn2

+ +R



Overlapping finite systems:  Symmetry 
Adapted Perturbation Theory (SAPT)

SAPT introduces Projection Operator to enforce the Pauli principle 
while still treating cross-coulomb interaction as a perturbation. 

Expands coulomb in multipoles, includes higher order pertn theory
Jeziorski +, Chem Rev 94, 1887 (‘94): 

Hesselman +, JACS 128, 11730 (‘06)

1 2

Once overlap occurs, we can’t distinguish electrons as 
belonging to one side or the other

This method is probably the state of the art for prediction of vdw 
interaction between molecules of modest size: but not yet feasible for 

extended nansystems, so not considered further here. 



Conventional view in nano-community: 
“universality” of asymptotic vdW

Rij

“Take vdW as given between atoms 
or sub-units:  Eij ≈ -C6
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E ∝ -D-2

E ∝ -D-4

E ∝ -D-4

E ∝ -D-4

E ∝ -D-5

E ∝ -D-5

D
Metallic Insulating

π -
conjugated

Present theory               Conv. theoriesASYMPTOTICS D →∞
ΣR-6, “vdW-DFT”

E ∝ -D-2

E ∝ -D-4

E ∝ -D-5/2

E ∝ -D-3

E ∝ -D-2 (lnD/b)-3/2

E ∝ -D-5

Coupled plasmon, RPA
Dobson White Rubio PRL 96, 07320 (2006).

See also Dobson, Gould et al PRB ‘08, ‘09,   PRA ‘09,  Lebegue et al  PRL 105, 196401 (2010),
JFD Surf Sci 2011,  R Liu et al  JCP 134, 114106 (2011) 2011
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vdW interaction between two “atoms”

Arises from correlations between dipole fluctuations.

Depends on polarizability of atoms

Can also be obtained from coupled plasmon z.p.e

Extended structures: individual atom pairs do not correlate independently.

Rather, correlation is between extended charge density fluctuations (plasmons).

In metallic 1D structures, long-wavelength plasmons have low energy, easily excited.

WHY THE DIFFERENT POWER LAWS FOR LOW-DIM METALLIC SYSTEMS?

Strong non-pairwise-additivity of vdW interactions 



(a) Conducting (b) Semiconducting
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D2A

D>>A

Nanotube attraction III: conducting case (ω0=0)

( ) ( ) ( ) ( ) ( )( )
2

12 /
,0 , ,0 , 2 ,0

4
De n mE q V q V q D V q V q D V q dq

L π

+∞

−∞

= + + − −∫
2 1

0

2 1
0

where   ( ,0) (2 ) ( ) ln( ) 1

( , ) (2 ) ( ) ( )D

V q e V q A q for Aq

V q D e V q K qD

−

−

= = − <<

= =

( )vdW
wire

1 1E (D) (q) (q) 2 (q) dq
L 2 2

∞
+ −−∞

= ω + ω − ω
π ∫vdW energy in RPA

( )

( ) ( )

2
21 2 1/ 2 3/ 20

1 03/ 2 20 0

3/ 2
2

/

20

3 2

2 0

( ) 14 (2 / ) 2 ( ) ln( / )

ln( / )

24 ln( )

4
ln( / )

( )
2

D
K qDe n m q dq xK x xD A dE

L

D A
D

x
DAq

xD A
xK x dx

D
x

π
∞ ∞− − −

−−
∞

⎛ ⎞
⎜ ⎟= − = −
⎜ ⎟
⎝ ⎠

≈ −− =

∫ ∫

∫

( )2 2
0 0 90 0

exp ( )( ln ) / ( ) 2.3xK x x dx xK x dxx
∞ ∞

= − =∫ ∫

2

3/ 22 ,
4

xUse a x a x a x a
a

+ + − − ≈ − <<



DIRECT AFM MEASUREMENT OF CNanoTube-CNT FORCE?

JFD, experimental design in progress
Need to consider nonparallel tubes:  JFD et al,PRA 80, 012506  (2009) 

vdW force from conducting e-s exceeds “majority” transitions only for D>5 nm

Fixed end dipoles exist – keep them apart with unequal-length tubes
Conclusions for the AFM expts:   “Weird” Force of a few picoNewtons measurable for

(6,6) Tubes L∼2 microns long,  20 nm apart

High vacuum, T = few K,  unequal tube lengths L1≠ L2



THREE DISTINCT CAUSES OF NON-PAIRWISE-ADDITIVE DISPERSION ENERGY

TYPE A NONADDITIVITY.

When atoms come together to make a molecule or solid, electron clouds 
overlap and may be compressed by Pauli effects, and also because

additional positive nuclei are nearby. This often makes the electrons less 
polarizable, reducing vdW energy with a second molecule, compared with a 

sum of free-atom pairs. .

TYPE B NONADDITIVITY.  

The presence of a nearby polarizable atom may affect (Coulomb-screen) the 
response of a second atom to fluctuations occurring on a third 

atom/molecule.      This can either reduce or enhance the vdW interaction 
depending on geometry.   It does not rely on overlap of atoms/molecules

TYPE C NONADDITIVITY.

This occurs in cases of degeneracy which favours large electron density 
fluctuations related to hopping of electrons between neighbouring atoms.  A 
metal is an extreme case of this. The longer electronic motions permit large 

dipoles to be induced, tending to increase the vdW interaction. This is 
however strongly suppressed by Type B effects for the case of 3D metals, 

but less so for 2D or 1D metals.

⇓
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Kim et al also concluded that 
adding triplet (Axilrod-Teller) terms 
is not enough.

r Chains of SiO2 spheres (B):
Kim et al, JCP 124, 074504 (2006) 

Kim et al
IMPORTANCE OF NON-PAIRWISE ADDITIVITY

Note: Don’t need metallic systems to see type B non-additivity.

H chains via SAPT: R.-F.Liu, J. Angyan, J. Dobson, JCP. 134, 114106 (2011) (B,C)

Large molecules: A. Tkatchenko et al, PRL 108, 236402 (2012) (gap ≠ 0: A,B)

(Discrete RPA method)



Tkatchenko et al, PRL 108, 236402 (2012)

Non-pairwise additivity in spherical Si clusters

20% 
effect



Uneven chain spacing.  r≠R (i.e. K=R/r >1) gives insulator, semiconductor:

r=R (I,e, K=1) gives metal

H CHAINS LIU+ANGYAN+DOBSON JCP  2011

D = 8a0 , r=1.84a0

Type C 
nonadditivity

Type B nonadditivity

(a)  Pointing chains

(b) Parallel chains



BEYOND ATOMIC PAIRWISE ADDITIVITY:     TYPE A 
Type A nonadditivity: Nearby atoms cause Pauli compression, atomic 
level spacing increases ⇒  χ decreases ⇒ C6

in molecule < C6
isolated atpms

Usually treated by empirical C6 fitting to molecular or SS data: 

e.g. Grimme JCP 132, 154104 (2010):   EDFT-D = EGGA- Σf(Rij) C6ij Rij
-6

e.g.. Hasegawa & Nishidate PRB 76, 115424 (2007) graphite layers

Wu & Yang JCP 116 515 (2002)  E = ELDA -Σf(rij)Rij
6 

e.g. “Univ, Graphitic Potential” (Lennard Jones) 
6 12

4E
R R
σ σε

− −⎛ ⎞⎛ ⎞ ⎛ ⎞⎜ ⎟= − +⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠Girifalco+, Phys. Rev. B 62, 13104 (2000)
Also Brenner, Tersoff

Tkatchenko, Scheffler PRL 102, 073005 (2009) 
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Fitted potentials for larger & layered systems



Type C nonadditivity: High symmetry ⇒ H-L gap → 0 ⇒ χ increases 

E.g. Low-D metals, graphene JFD+, Phys. Rev. Lett. 96, 073201 (2006)

Type B nonadditivity: (e.m. effect) polzn of additional atoms screens
vdW interaction between a pair. Esp. in large low-dimensnal systems

Chains of SiO2 beads: Kim et al JCP 124, 074504 2006

H atom chain  Liu+Angyan+JFD, JCP 134, 114106 (2011): Misquitta

Tkatchenko et al PRL 108, 236402 (2012): RPA with point polarizable 
dipoles representing atoms

Chang, 1D conductors Phys Letts 37A, 311 (1971) (RPA/plasmon ZPE)

Parallel 2D metals Sernelius & Bjork 57, 6592 (1998)

TYPES B AND C NONADDITIVITY



Interacting(λ) and KS (λ=0) dens response
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Perturbation theory and vdW  I

1 2

Nonoverlapping
finite systems

H.C. Longuet-Higgins, Disc. Faraday Soc. 40, 7 (1965).
E. Zaremba and W. Kohn, P.R.B 13 2270 (1976).

“Generalized Casimir-Polder formula"
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vdW energy: well separated systems
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TDDFT/ACF/FDT CONTAINS ALL THE BASIC 
CHEMICAL AND PHYSICAL FORCES - I

{ }
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Insert expr. for χKS from {φi}  ⇒ Ex = EHF({φi}) 

Our Exc contains EXACT DFT EXCHANGE

ACF-FDT (exact)

RPA Interaction energy related to sum of coupled plasmon zero-point energies

For generalization see Furche 129, 114105 (2008) ( )
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DIAGRAMS, (d)RPA
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dRPA Screening equ. =
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+

+ . . . .+ +=

In extended or very anisotropic systems, beyond-pairwise vdW terms are large for low q

MP2, MP3- like terms (no exch diagrs)
+ + . . . .= Sum of rings=

Time dep Hartree approx

Fluct-diss theoremAdiabatic conn

In dRPA:

pair (2-atom, Casimir-Polder) contributions come from diagrs with 2 inter-atom U lines

triplet (3-atom, Axilrod-Teller) contributions come from diagrs with 3 inter-atom U lines, 
etc



+ + . . . .
dRPA energy for two systems                        (SEAMLESS)
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use down to bonding  
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Expt (T=0 
extrapolation)
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Bandstructure of 
single graphene 

plane (semimetal)
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(meV /atom)

43i 35j 52k

(All suspect and involve 
assumptions of additive 

vdW forces)

48+56m24c 45.5a 50b24Binding 
energy 

40.7e 36.5ef 38.7g 37h37?13c ,   na,    27b29.5C33 (Gpa)

distance D0

3.353.343. 43m3.76c 3.6a    3.59b3.33interplanar 
Equilibrium 

Expts

ACFDT-
dRPA 

(present)DMC vdW-DF
LDA 

(Present)

LAYER BINDING PROPERTIES OF GRAPHITE

Lebegue, Harl, Gould, Angyan, Kresse, Dobson, PRL 105, 196401 (2010)

One of many RPA success stories for a0, Ecoh, B of periodic solids 
D

Many other solids in RPA: Harl, Kresse PRL 103, 056401 (2009):



Numerical  ΔE = CD-3 law from dRPA (VASP) with transitions restricted to within 
1.25 eV of EF.   (Excludes non - πz transitions ⇒D-4 that still dominate here)

Coefficient C from this fit is much less than analytic RPA prediction but 

(i)  ±1.25 eV restriction removes some πz-πz* transitions  ∴C underestimated’

(ii)   Local-field screening effects neglected in analytic approach might matter 

VERIFICATION OF D-3 POWER LAW FOR GRAPHITE,  PRL 105, 196401 (2010)



SOME WEAKNESSES OF dRPA ENERGY  (ACFDT with fxc = 0)

1 dRPA does not exclude incorrect orbital self-interaction in the dynamical response

This can be a big problem where one wants to describe correlations 
between s electrons eg He2, Be2.  But SIC is not a major problem (e.g.) for 
spatially extended 2π orbitals that are important in graphitic cohesion.  
The SIC problem is largely fixed by RPAx, RPA+SOSEX, ISTLS, ….

2. dRPA gives a poor account of the short ranged part of the correlation hole. 
It therefore often grossly overestimates the absolute correlation energy. 

E.g.  Homogeneous electron gas, rs= 10,:    ec = -22 mH/e.   ecRPA = -30 mH/e
As pointed out by John Perdew et al, the RPA error in Ec often largely 
cancels out in forming isoelectronic energy differences – e.g. change in 
correlation energy when one moves two nanostructures apart, as in binding 
energy curve calculations.   This is especially true where the orbital symmetry 
and degree of localization are not changing. Example: graphite layer binding 
.This sr corr hole problem can also be addressed by (e.g.) RPAx, SOSEX 

RPA+fxcr or range separation methods Num. application to layer binding of 
graphitics in ACFDT is rather good (Seb Lebegue has prelim results).

3. RPA as usually implemented may strongly depend on input orbitals
and self-interaction effects are very important here (ideally need SC RPA????)



J. Toulouse et al, 

Severe failure of RPA in Be2 binding curve: 

related to SIC and/or degeneracy effects?



1 2
Nonoverlapping
finite systems

Andersson et al PRL 76, 102 (1996): (indirect, based on Rapcewicz+Ashcroft)
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( ) ( ) 1
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V V

n r n r
E C d r d r

n r n r r r
= −
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DENSITY FUNCTIONALS FOR VDW ENERGY  I

+ used 2nd order 
pertn th in V12

coulomb

Needs spatial cutoffs

Dobson/Dinte PRL 76, 1780 (1996): direct derivation from local polarizability

Sato & Nakai JCP 131, 224104 2009 (atoms, molecules) 

133, 194101 2010       Incl some triplets etc.



“VDW-DF” Dion et al PRL 04 FROM PRESENT POINT OF VIEW

Assumption 1: “Full potential approximation”:  assumed indep of λ soλχ

[ ]( ) ( )11ln 1 * ln ( )scr
xcE Tr V SI Tr SI RPA likeλλχ ε ==≈ − − = − −

Starting point : exact ACFD

[ ]( ) ( )1 11 1

0 0
1 * scr

xcE Tr V V d SI d Tr V SIλλ λ λχ λ χ λ λ ε χ− −∝ − − = −∫ ∫

Assumption 2: “ Reference approximation ” The theory is obtained as a correction to 
the following reference energy

[ ]( )ln : ,ref scr
xcE Tr SI RPA like but with instead ofε ε ε= − −

The assumption is (?) then that  this is something like the LDA energy, since it 
becomes correct for a 3DEG?  Then it is assumed that  Eref

xc ∼ ELDA + Enl

Assumption 4: “Separable Plasmon Pole Approx”.

S(q,q’, ω)  approximated in a separable way with semilocal behavior (dep n(r), ∂n.)

Assumption 3:  “Perturbative screening”

Treat only to second order in S  ≡ 1- ε-1 ⇒ pairwise additive for multimers. 

( ) 11 2{ln (1 * ) }, 4 ( 1)nlE Tr V eε χ χ α π ε
−−⎡ ⎤∝ − = ∇ ∇ = ∇ − ∇⎣ ⎦

Refinements by  Vydrov+.  Efficient  implementations: Soler, Klimes,

( )3 31 ' ( ) ( ') , ( ), ( ); ', ( '), ( ')
2

nlE d r d r n r n r r n r n r r r rf n n= ∇ ∇∫

6' , 'f r r r r−∝ − − → ∞



Right answers for right 
reasons (converged??)

YYYDMC

Right answers for right 
reasons

YYYRPA

Takes dielectric fn from 
experiment

N/AYN/ALifshitz

Loses type B because of 
pert. Coulomb screening

NNYvdW DF 

I Gets type A via volume 
compression in molecule 

II uses dynamic RPA

N           
N

N
Y

Y        
Y

Tkatchenko + I 
Tkatchenko + II 

Gets type A by adopting 
diff C6 for atom in molec. 

NNYGrimme, Yang 
 Σ C6

(ij) R-6

COMMENTSGets Type 
C 

nonadd.?

Gets Type B 
nonadd.?

Gets 
Type A 
nonadd.

?

Method

CAN COMMON NANOSTRUCTURE vdW METHODS HANDLE NONADDITIVITY?



CAN COMMON vdW METHODS HANDLE LAYERED vdW SOLIDS?
Bjorkman et al, PRL 108, 235502 (2012) & arXiv:1206.3542v1

ΔD = Predicted Interlayer spacing  - experiment



CAN COMMON vdW METHODS HANDLE LAYERED vdW SOLIDS?
Bjorkman et al, PRL 108, 235502 (2012) & arXiv:1206.3542v1

ΔEL = Predicted Interlayer binding energy - RPA



QUANTUM CONTINUUM MECHANICS (pseudo-hydodynamics)

J. Tao, X. Gao, G. Vignale, and I. V. Tokatly, Phys. Rev. Lett. 103, 086401 (2009); 
X. Gao, J. Tao, G. Vignale, and I. V. Tokatly, Phys. Rev. B 81, 195106 (2010).

Tokatly looked at the Schrodinger 
equation in the co-moving (rotating 

and translating) reference frame that 
moves with the fluid  ⇒ General-
relativity style theory with metric 

tensor g 

I.V. Tokatly, Phys. Rev. B 71, 165105 (2005); 75, 125105 (2007).

At time t0

At time t > t0

LINEARIZED QUANTUM CONTINUUM MECHANICS “CM”

No longer contains g tensors explicitly, but the evolution equations for u(r,t) 
involve a the groundstate number density n0(r), the groundstate KS potential 
VKS(r) and a “new density”, the groundstate KS stress tensor T0(r ) 

Assumed the MB wavefunction is stationary in the co-moving frame – means 
this is a short-time or high- ω theory – response correct to O(ω-2), O(ω-4).

Exact linear response of 1-e- quantum system



Calculate bare density response χ0(r,r’) from occ & unocc KS orbitals

Approximate χ0 from CM (Continuum mechanics). 3 coupled DEs

Use Fluct Diss Thm (∫χdu) and Adiabatic Connection ( ∫dλ) to get Ec

( )

( )

1

00 0

0 00
ln 1

c
rr

r

E du d dr V

duTr V V

λχλ χ
π

χ χ
π

∞

∞

= −⎡ ⎤⎣ ⎦

= − +⎡ ⎤⎣ ⎦

∫ ∫ ∫

∫

NEW QCM/RPA SCHEME FOR NONPAIRWISE e- CORRln ENERGY
(Gould&Dobson PRB 84, 241108(R) (2011)

Do TDH selfconsistency, RPA screening, Dyson-like equation

=
χλ χ0 χ0 λV χλ

+

Or solve time-dep. equ. for perturbation to each occupied orbital  δψi(t)

( )
* *

0
,

( ) ( ') ( ) ( ')
( , ', ) i j j i

i j
i j i j

r r r r
r r f f

φ φ φ φ
χ ω

ε ε ω
= −

− −∑

1
0 0(1 )Vλ λχχ χ−= −



First num. test of CM-RPA on vdW system: parallel jellium slabs 
Auxiliary basis: 

( )
( )

|||, ||

||

exp( . ) exp ,

exp( . ) exp tanh( ),
nk q

t t

iq r ikz

iq r ikz k z k opt for convergence

φ =

s

D
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background
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