Diffusion Monte Carlo simulations of crystalline FeO under pressure

J. Kolorenč and L. Mitas

North Carolina State University

July 20, 2007

FeO

- magnesiowüstite, Mg_xFe_{1-x}O, is (believed to be?) one of the most abundant minerals in the lower Earth mantle
- FeO is a subset of Mg_xFe_{1-x}O

quantum Monte Carlo

• conventional band-structure methods unreliable for materials with 3*d* electrons

The method

Diffusion quantum Monte Carlo (DMC)

• stochastic implementation of projector on the ground state

modified diffusion in 3*N*-dim space, $\Psi(1, \ldots, N)$ acts as a probability distribution

 fermionic Ψ changes sign (antisymmetry w.r.t. particle exchanges) → fixed-node approximation

$$\mathsf{sign} \ \Psi(1, \dots, N) = \mathsf{sign} \ \Psi_T(1, \dots, N)$$

DMC and DFT

nodal quality for solids: even the simplest ansatz for nodes is seen to provide considerably better results than DFT based methods

Trial wave function

- "trial" wave function sampling efficiency
 - nodal structure
 - initial guess

$$\Psi_{T}(1,\ldots,N) = \underbrace{\det[\psi_{i}(j)]}_{} \times \underbrace{\exp[J(1,\ldots,N)]}_{}$$

Slater determinantJastrow many-bodyof 1-body orbitalscorrelation factor

- 1-body orbitals = variational "parameters"
 - Hartree-Fock approximation
 - PBE0_x PBE-GGA mixed with x % of exact exchange
- Jastrow factor

$$J(1,\ldots,N) = \sum_{i} f_e(\mathbf{r}_i) + \sum_{ij} f_{ee}(\mathbf{r}_i - \mathbf{r}_j) + \sum_{i,\alpha} f_{el}(\mathbf{r}_i - \mathbf{R}_\alpha)$$

Reduction to the primitive cell?

interacting particles in a periodic potential

No 1-electron Bloch theorem \longrightarrow large simulation cell needed

Reduction to the primitive cell?

interacting particles in a periodic potential

No 1-electron Bloch theorem \longrightarrow large simulation cell needed

Periodic Coulomb interaction

Periodically repeated supercell ($\mathbf{k} = 0...$ homogeneous background)

$$v_{ee}(\mathbf{r}) = \sum_{\mathbf{R}_{S}} \frac{1}{|\mathbf{r} - \mathbf{R}_{S}|} \simeq \frac{4\pi}{\Omega} \sum_{\mathbf{k} \neq 0} \frac{1}{k^{2}} e^{i\mathbf{k} \cdot \mathbf{r}}$$

Both sums converge slowly \longrightarrow cure: combine them into one

$$\begin{split} \sum_{\mathbf{k}\neq 0} \frac{1}{k^2} e^{i\mathbf{k}\cdot\mathbf{r}} &= \sum_{\mathbf{k}\neq 0} \frac{1}{k^2} e^{-k^2/(4\alpha^2)} e^{i\mathbf{k}\cdot\mathbf{r}} - \lim_{\mathbf{k}\to 0} \frac{1}{k^2} \left(1 - e^{-k^2/(4\alpha^2)}\right) \\ &+ \sum_{\mathbf{k}} \frac{1}{k^2} \left(1 - e^{-k^2/(4\alpha^2)}\right) e^{i\mathbf{k}\cdot\mathbf{r}} \\ &= \sum_{\mathbf{k}\neq 0} \frac{1}{k^2} e^{-k^2/(4\alpha^2)} e^{i\mathbf{k}\cdot\mathbf{r}} - \frac{1}{4\alpha^2} \\ &+ \frac{\Omega}{4\pi} \sum_{\mathbf{R}_S} \frac{1}{|\mathbf{r} - \mathbf{R}_S|} \operatorname{erfc}(\alpha|\mathbf{r} - \mathbf{R}_S|) \end{split}$$

Total interaction energy (Ewald)

Total e-e interaction energy per simulation cell.

l

Total interaction energy (Ewald), cont.

The same formula once more in B&W.

$$\begin{aligned} \mathcal{V}_{ee} &= \underbrace{\frac{1}{2} \sum_{i \neq j} v_{ee}(\mathbf{r}_{ij})}_{\text{interaction of } i \text{ with } j} + \underbrace{\frac{1}{2} \sum_{i} \lim_{\mathbf{r}_{ii} \to 0} \left[v_{ee}(\mathbf{r}_{ii}) - \frac{1}{r_{ii}} \right]}_{\text{interaction of } i \text{ with } j} \\ &= \frac{1}{2} \sum_{i \neq j} \sum_{\mathbf{R}_{S}} \frac{1}{|\mathbf{r}_{ij} - \mathbf{R}_{S}|} \operatorname{erfc}(\alpha |\mathbf{r}_{ij} - \mathbf{R}_{S}|) \\ &+ \frac{2\pi}{\Omega} \sum_{\mathbf{k} \neq 0} \frac{1}{k^{2}} e^{-k^{2}/(4\alpha^{2})} \sum_{i \neq j} e^{i\mathbf{k} \cdot \mathbf{r}_{ij}} \\ &- \frac{1}{2} N^{2} \frac{\pi}{\Omega \alpha^{2}} - N \frac{\alpha}{\sqrt{\pi}} + \frac{1}{2} N \sum_{\mathbf{R}_{S} \neq 0} \frac{1}{|\mathbf{R}_{S}|} \operatorname{erfc}(\alpha |\mathbf{R}_{S}|) \end{aligned}$$

FeO, part I

Cohesive energy

$$E_{coh} = E_{atom}[TM] + E_{atom}[O] - \frac{1}{\mathcal{N}_{TMO}} E_{supercell}[TMO]$$

Simulation parameters

- simulation cell size: 8 FeO (176 electrons)
- further corrections towards infinite system (will discuss later)
- Ne-core pseudopotentials for Fe and Mn, He-core for O (Dirac-Fock, Troullier-Martins)

	LDA	HF	B3LYP	DMC[HF]	DMC[PBE0 ₂₀]	exp.
FeO	11.68	5.69	7.95	9.23(6)	9.47(4)	9.7
MnO	10.57	5.44	7.71		9.26(4)	9.5

* all calculations at experimental lattice constant

FeO total energy (hartree)

-139.6105(8) -139.6210(5)

Cohesive energy

$$E_{coh} = E_{atom}[TM] + E_{atom}[O] - \frac{1}{N_{TMO}} E_{supercell}[TMO]$$
Simulation parameters
• simulation cell size: 8 FeO (176 electrons)
• further corrections towards infinite system (will discuss later)
• Ne-core pseudopotentials for Fe and Mn, He-core for O
(Dirac-Fock, Troullier-Martins)
$$\frac{\det[\psi_i^{PBE0_{20}}(j)]}{\det[\psi_i^{PBE0_{20}}(j)]}$$

$$\frac{LDA \quad HF \quad B3LYP \quad DMC[HF] \quad DMC[PBE0_{20}] \quad exp.}{FeO \quad 11.68 \quad 5.69 \quad 7.95 \quad 9.23(6) \quad 9.47(4) \quad 9.7}$$
MnO $\quad 10.57 \quad 5.44 \quad 7.71 \quad 9.26(4) \quad 9.5$

* all calculations at experimental lattice constant

FeO total energy (hartree)

-139.6105(8) -139.6210(5)

Competing crystal structures in FeO

Fe ↑

Fe ↓

0

iB8 (NiAs) AFM

Equation of state: Experimental estimates

Experiments are not particularly conclusive so far.

shock-wave compression
 P_c ~ 70 GPa
 [Jeanloz&Ahrens (1980)]

- static compression
 - 900 K: $P_c \sim$ 74 GPa
 - 600 K: P_c ~ 90 GPa [Fei&Mao (1994)]
 - 300 K: $P_c > 220$ GPa
 - ? large barrier & slow kinetic ? [Yagi,Suzuki,&Akimoto (1985)] [Mao,Shu,Fei,Hu&Hemley (1996)]

Equation of state: Failure of LDA/GGA

• iB8 stable at all pressures

[Mazin, Fei, Downs&Cohen (1998)]

[Fang, Terakura, Sawada, Miyazaki &Solovyev (1998)]

• B1 has no gap (metal)

Equation of state: "Correlated" band theories

Inclusion of Coulomb U stabilizes B1 phase.

[Fang, Terakura, Sawada, Miyazaki&Solovyev (1998)]

volume

Equation of state: DMC[PBE0₂₀]

Finite size errors

Only 8 FeO in the simulation cell: Finite-size errors

• kinetic energy FSE

average over 8 k-points (a.k.a. twists of boundary conditions) \rightarrow only $\sim 0.01 \text{ eV/FeO}$ away from converged Brillouin zone integral

• potential energy FSE (beyond Ewald)

• $E - E_{\infty}$ comparable to the scale of our physics (~ 1 eV/FeO)

 finite-size scaling at every volume too expensive

Improving kinetic energy — *k*-point average

Adding k-points effectively increases simulation cell size...

... but not quite when interactions are in the game.

Improving kinetic energy — *k*-point average

Adding k-points effectively increases simulation cell size...

... but not quite when interactions are in the game.

Only 8 FeO in the simulation cell: Finite-size errors

• kinetic energy FSE

average over 8 k-points (a.k.a. twists of boundary conditions) \rightarrow only $\sim 0.01 \text{ eV/FeO}$ away from converged Brillouin zone integral

• potential energy FSE (beyond Ewald)

- $E E_{\infty}$ comparable to the scale of our physics (~ 1 eV/FeO)
- finite-size scaling at every volume too expensive

Potential energy & static structure factor

[after Chiesa, Ceperley, Martin&Holzmann (2006)]

$$V_{ee} = \frac{1}{2} \sum_{i \neq j} \frac{1}{r_{ij}} = \frac{2\pi N}{\Omega} \sum_{\mathbf{k}} \left(\frac{\rho_{\mathbf{k}} \rho_{-\mathbf{k}}}{N} - 1 \right) = \frac{2\pi N}{\Omega} \sum_{\mathbf{k}} \left(S_{\mathcal{N}}(\mathbf{k}) - 1 \right)$$

Correction $\Delta_{FS} = \left(\lim_{\Omega
ightarrow \infty} V_{ee} - V_{ee}
ight) / N$ has two parts

•
$$\Delta_{FS}^{(1)} = \frac{2\pi}{\Omega} \sum_{\mathbf{k}\neq 0} \frac{1}{k^2} - \frac{1}{4\pi^2} \int d^3k \, \frac{1}{k^2} = \lim_{\mathbf{r}_{ii}\to 0} \left[v_{ee}(\mathbf{r}_{ii}) - \frac{1}{r_{ii}} \right]$$

... this one we already know (and have in Ewald formula)

•
$$\Delta_{FS}^{(2)} = \frac{1}{4\pi^2} \int d^3k \, \frac{S_{\infty}(\mathbf{k})}{k^2} - \frac{2\pi}{\Omega} \sum_{\mathbf{k}\neq 0} \frac{S_N(\mathbf{k})}{k^2} \simeq \frac{1}{4\pi^2} \int_0^{(2\pi/L)^3} d^3k \, \frac{S_{\infty}(\mathbf{k})}{k^2}$$

... this contribution is new

Potential energy & static structure factor, cont.

We need $S_{\infty}(\mathsf{k})$ at $\mathsf{k} \leq 2\pi/\mathsf{L}$

- $S_N(\mathbf{k})$ does not depend much on $N \longrightarrow S_\infty(\mathbf{k}) \simeq S_N(\mathbf{k})$
- k ≤ 2π/L correspond to wavelengths longer than the size of our simulation cell, i.e., no direct access to S_N(k) there → extrapolation needed
- fortunately, exact identity fixes $S_N(\mathbf{0}) = 0$, so that the extrapolation is under control

Extrapolated estimate for $S(\mathbf{k})$

• mixed estimate

DMC with guiding wave function samples the mixed distribution $f(\mathbf{R}) = \Psi_0(\mathbf{R})\Psi_T(\mathbf{R})$

$$\langle \Psi_0 | \hat{S} | \Psi_T \rangle = \int d^{3N}R \underbrace{\Psi_0(\mathbf{R}) \Psi_T(\mathbf{R})}_{f(\mathbf{R})} \underbrace{\frac{\hat{S}(\mathbf{R}) \Psi_T(\mathbf{R})}{\Psi_T(\mathbf{R})}}_{S_L(\mathbf{R})} = \frac{1}{N_w} \sum_w S_L(\mathbf{R}_w)$$

 $\Psi_{\mathcal{T}}(\mathbf{R})$ known in explicit form \longrightarrow derivatives in $\hat{S}(\mathbf{R})$ would be no problem in evaluation of $S_L(\mathbf{R})$

extrapolated estimate

approximate expression for the desired matrix element

$$\langle \Psi_0 | \hat{S} | \Psi_0 \rangle = 2 \langle \Psi_0 | \hat{S} | \Psi_T \rangle - \langle \Psi_T | \hat{S} | \Psi_T \rangle + \mathcal{O} \big((\Psi_0 - \Psi_T)^2 \big)$$

$$\begin{split} \overline{|\Psi_{0}\rangle} &= |\Psi_{T} + \Delta\rangle : \quad \overline{\langle\Psi_{T} + \Delta|\hat{S}|\Psi_{T} + \Delta\rangle} = \overline{\langle\Psi_{T}|\hat{S}|\Psi_{T}\rangle} + 2\langle\Delta|\hat{S}|\Psi_{T}\rangle + \overline{\langle\Delta|\hat{S}|\Delta\rangle} \\ & \overline{\langle\Psi_{T} + \Delta|\hat{S}|\Psi_{T}\rangle} = \overline{\langle\Psi_{T}|\hat{S}|\Psi_{T}\rangle} + \overline{\langle\Delta|\hat{S}|\Psi_{T}\rangle} \end{split}$$

Comparison of various estimates for $S(\mathbf{k})$

Expectation values in DMC and DFT

DMC

- expectation values calculated using explicitly correlated many-body wave function
- in general, only mixed estimators $\langle \Psi_0 | \hat{A} | \Psi_T \rangle$ available; these depend on quality of $| \Psi_T \rangle$
- for the total energy and all $[\hat{B}, \hat{H}] = 0$ we have $\langle \Psi_0 | \hat{B} | \Psi_T \rangle = \langle \Psi_0 | \hat{B} | \Psi_0 \rangle$

DFT

- quantities calculated from eigenfunctions of artificial non-interacting Kohn-Sham system
- these eigenfunctions (and eigenvalues) not guaranteed to have direct physical content (but often seem to be close)
- total energy prominent K-S system constructed to have the same total energy as the original interacting system

Back to FeO

"S(k) correction" does a good job

Finite size errors at different levels of compression \longrightarrow errors grow as electron density increases

Transition pressure P_c revisited

Finite-size corrections (slightly) increase P_c .

- pure Ewald formula \rightarrow $P_c = 57 \pm 5$ GPa
- $S(\mathbf{k})$ correction $\rightarrow P_c = \mathbf{65} \pm \mathbf{5} \text{ GPa}$

Equilibrium volume and related properties

Murnaghan equation of state fits the B1 AFM-II data nicely.

Equilibrium volume and related properties, cont.

$$E(V) = E_0 + \frac{K_0 V}{K'_0} \left(\frac{(V_0/V)^{K'_0}}{K'_0 - 1} + 1 \right) - \frac{K_0 V_0}{K'_0 - 1}$$
$$K_0 = -V \left(\frac{\partial P}{\partial V} \right)_T \qquad K'_0 = \left(\frac{\partial K_0}{\partial P} \right)_T$$

	<i>a</i> ₀ (Å)	K_0 (GPa)	K'_0
DMC, pure Ewald	4.283(7)	189(8)	5.5(7)
DMC + $S(\mathbf{k})$ correction	4.324(6)	170(10)	5.3(7)
PBE0 ₂₀	4.328	182	3.7
PBE0 ₁₀	4.327	177	3.7
PBE	4.300	191	3.5
LDA	4.185	224	4.0
experiment	4.307-4.334	140–180	2.1-5.6

Can we access also spectral information?

[Bowen, Adler&Auker (1975)]

Band gap estimate in B1 at ambient pressure

$$\Delta = E_{solid}^{s.cell}[e.s.] - E_{solid}^{s.cell}[g.s.] = 2.8 \pm 0.4 \text{ eV}$$

Band gap estimate in B1 at ambient pressure, cont.

DMC, hybrid-functional DFT and LDA+U compared.

Notes on band gaps in DMC

- in Δ = E[e.s.] − E[g.s.], the intensive quantity Δ is calculated from extensive energies
 → unfavorable for errorbars
- single k-point quantities; although large cancellation of kinetic energy finite-size errors is likely (E[e.s.] and E[g.s.] are at the same k-point), safe elimination of these is through a large simulation cell

→ unfavorable for errorbars

• (the lowest) excited state must have a different symmetry than the ground state (exc. state is then a groundstate within that symmetry)

→ might not be the case in large supercell with small number of symmetry operations

• other methods for extracting excited-state information from DMC available, but considerably more costly

Final words

- quantum Monte Carlo is ready to be applied to solids with correlated d electrons
- FeO case study is very encouraging
 - good agreement with experimental data at both ambient conditions and elevated pressure
 - consistently accurate for various quantities (cohesion, $P_c(B1 \rightarrow iB8)$, equilibrium lattice constant, bulk modulus, ...)
- computer time provided by INCITE ORNL and NCSA

more good news: you can try it at home

```
www.qwalk.org
```

(Lucas Wagner, Michal Bajdich and Lubos Mitas)

the bad news: you need some 100,000+ CPU hours (for EoS)