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Why?
FeO

magnesiowüstite, MgxFe1−xO, is
(believed to be?) one of the most
abundant minerals in the lower
Earth mantle

FeO is a subset of MgxFe1−xO

quantum Monte Carlo

conventional band-structure
methods unreliable for materials
with 3d electrons
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The method
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Diffusion quantum Monte Carlo (DMC)

stochastic implementation of projector on the ground state

e−Ĥτ |ΨT 〉
τ→∞−−−−−−−→ e−E0τ |Ψ0〉 ,

modified diffusion in 3N-dim space, Ψ(1, . . . ,N) acts as
a probability distribution

fermionic Ψ changes sign (antisymmetry w.r.t. particle
exchanges) −→ fixed-node approximation

sign Ψ(1, . . . ,N)

= signΨT (1, . . . ,N)
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DMC and DFT

diffusive projection

e−Ĥτ |ΨT 〉
τ→∞−−−−−→ e−E0τ |Ψ0〉

Hohenberg-Kohn theorem
&

Kohn-Sham equations

give exact answers if we know

nodes of the wave function
the exchange-correlation

functional

nodal quality for solids: even the simplest ansatz for nodes is
seen to provide considerably better results than DFT based

methods
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Trial wave function
“trial” wave function sampling efficiency

nodal structure
initial guess

ΨT (1, . . . ,N) = det
[
ψi (j)

]︸ ︷︷ ︸× exp
[
J(1, . . . ,N)

]︸ ︷︷ ︸
Slater determinant

of 1-body orbitals

Jastrow many-body

correlation factor

1-body orbitals = variational “parameters”
Hartree-Fock approximation
PBE0x — PBE-GGA mixed with x % of exact exchange

Jastrow factor

J(1, . . . ,N) =
∑

i

fe(ri ) +
∑
ij

fee(ri − rj) +
∑
i ,α

feI (ri − Rα)
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Reduction to the primitive cell?

non-interacting particles in a periodic potential

E [config1] = E [config2]

interacting particles in a periodic potential

E [config1] 6= E [config2]

No 1-electron Bloch theorem −→ large simulation cell needed
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Periodic Coulomb interaction
Periodically repeated supercell (k = 0. . . homogeneous background)

vee(r) =
∑
RS

1

|r − RS |
' 4π

Ω

∑
k6=0

1

k2
e ik·r

Both sums converge slowly −→ cure: combine them into one∑
k6=0

1

k2
e ik·r =

∑
k6=0

1

k2
e−k2/(4α2)e ik·r − lim

k→0

1

k2

(
1− e−k2/(4α2)

)
+
∑
k

1

k2

(
1− e−k2/(4α2)

)
e ik·r

=
∑
k6=0

1

k2
e−k2/(4α2)e ik·r − 1

4α2

+
Ω

4π

∑
RS

1

|r − RS |
erfc(α|r − RS |)
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Total interaction energy (Ewald)

Total e–e interaction energy per simulation cell.

2

1 1’

2’

Vee =
1

2

∑
i 6=j

1

rij
+

1

2

∑
i

[
vee(rii )−

1

rii

]

+
1

2

∑
i<j

[
vee(rij)−

1

rij

]
+

1

2

∑
j<i

[
vee(rij)−

1

rij

]
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Total interaction energy (Ewald), cont.

The same formula once more in B&W.

Vee =
1

2

∑
i 6=j

vee(rij)︸ ︷︷ ︸
interaction of i with j
and with images of j

+
1

2

∑
i

lim
rii→0

[
vee(rii )−

1

rii

]
︸ ︷︷ ︸

interaction of i with
its periodic images

=
1

2

∑
i 6=j

∑
RS

1

|rij − RS |
erfc(α|rij − RS |)

+
2π

Ω

∑
k6=0

1

k2
e−k2/(4α2)

∑
i 6=j

e ik·rij

− 1

2
N2 π

Ωα2
− N

α√
π

+
1

2
N
∑
RS 6=0

1

|RS |
erfc(α|RS |)
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FeO, part I
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Cohesive energy

Ecoh = Eatom[TM] + Eatom[O]− 1

NTMO
Esupercell [TMO]

Simulation parameters

simulation cell size: 8 FeO (176 electrons)
further corrections towards infinite system (will discuss later)
Ne-core pseudopotentials for Fe and Mn, He-core for O
(Dirac-Fock, Troullier-Martins)

LDA HF B3LYP DMC[HF] DMC[PBE020] exp.

FeO 11.68 5.69 7.95 9.23(6) 9.47(4) 9.7
MnO 10.57 5.44 7.71 9.26(4) 9.5

* all calculations at experimental lattice constant

FeO total energy (hartree) −139.6105(8) −139.6210(5)
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�

det[ψHF
i (j)]




�

det[ψPBE020
i (j)]
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Competing crystal structures in FeO

Fe ↑

Fe ↓

O

B1 (NaCl) AFM-II iB8 (NiAs) AFM
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Equation of state: Experimental estimates

Experiments are not particularly conclusive so far.

en
er

gy

volume

iB8

B1 (in
sulator)

shock-wave compression
Pc ∼ 70 GPa

[Jeanloz&Ahrens (1980)]

static compression
900 K: Pc ∼ 74 GPa
600 K: Pc ∼ 90 GPa

[Fei&Mao (1994)]

300 K: Pc > 220 GPa
? large barrier & slow kinetic ?

[Yagi,Suzuki,&Akimoto (1985)]

[Mao,Shu,Fei,Hu&Hemley (1996)]
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Equation of state: Failure of LDA/GGA
en

er
gy

volume

iB8

B1 (metal)

iB8 stable at all pressures

[Mazin,Fei,Downs&Cohen (1998)]

[Fang,Terakura,Sawada,Miyazaki

&Solovyev (1998)]

B1 has no gap (metal)
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Equation of state: “Correlated” band theories

Inclusion of Coulomb U stabilizes B1 phase.
[Fang,Terakura,Sawada,Miyazaki&Solovyev (1998)]

en
er

gy

volume

iB8

B1 (in
sulator)

FeO

method Pc (GPa)

PBE010 7
PBE020 43
exp. &&& 70

MnO

method Pc (GPa)

PBE010 117
exp. ∼ 100
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Equation of state: DMC[PBE020]
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* pure Ewald formula

geometry optimization:
iB8 c/a (PBE020)
B1 none
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Finite size errors
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Only 8 FeO in the simulation cell: Finite-size errors
kinetic energy FSE
average over 8 k-points (a.k.a. twists of

boundary conditions) → only ∼ 0.01 eV/FeO

away from converged Brillouin zone integral
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Improving kinetic energy — k-point average

Adding k-points effectively increases simulation cell size. . .

L = L0 L = 2L0

Γ Γ

. . . but not quite when interactions are in the game.
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Only 8 FeO in the simulation cell: Finite-size errors
kinetic energy FSE
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Potential energy & static structure factor
[after Chiesa,Ceperley,Martin&Holzmann (2006)]

Vee =
1

2

∑
i 6=j

1

rij
=

2πN

Ω

∑
k

(ρkρ−k

N
− 1
)

=
2πN

Ω

∑
k

(
SN(k)− 1

)

Correction ∆FS =
(
limΩ→∞ Vee − Vee

)
/N has two parts

∆
(1)
FS =

2π

Ω

∑
k6=0

1

k2
− 1

4π2

∫
d3k

1

k2
= lim

rii→0

[
vee(rii )−

1

rii

]
. . . this one we already know (and have in Ewald formula)

∆
(2)
FS =

1

4π2

∫
d3k

S∞(k)

k2
− 2π

Ω

∑
k6=0

SN(k)

k2
' 1

4π2

(2π/L)3∫
0

d3k
S∞(k)

k2

1

4π2

(2π/L)3∫
0

d3k
S∞(k)

k2

1

4π2

(2π/L)3∫
0

d3k
S∞(k)

k2

. . . this contribution is new
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Potential energy & static structure factor, cont.

∆
(2)
FS =

1

4π2

(2π/L)3∫
0

d3k
S∞(k)

k2

0.0

0.1
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0.3

0.0 0.2 0.4 0.6 0.8 1.0 1.2

S
(k

)

|k|

0.0

0.5

1.0

0 1 2 3 4

We need S∞(k) at k ≤ 2π/L

SN(k) does not depend much on N −→ S∞(k) ' SN(k)

k ≤ 2π/L correspond to wavelengths longer than the size of
our simulation cell, i.e., no direct access to SN(k) there
−→ extrapolation needed

fortunately, exact identity fixes SN(0) = 0, so that the
extrapolation is under control
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Extrapolated estimate for S(k)
mixed estimate
DMC with guiding wave function samples the mixed
distribution f (R) = Ψ0(R)ΨT (R)

〈Ψ0|Ŝ |ΨT 〉 =

∫
d3NR Ψ0(R)ΨT (R)︸ ︷︷ ︸

f (R)

Ŝ(R)ΨT (R)

ΨT (R)︸ ︷︷ ︸
SL(R)

=
1

Nw

∑
w

SL(Rw )

ΨT (R) known in explicit form −→−→−→ derivatives in Ŝ(R) would
be no problem in evaluation of SL(R)

extrapolated estimate
approximate expression for the desired matrix element

〈Ψ0|Ŝ |Ψ0〉 = 2〈Ψ0|Ŝ |ΨT 〉 − 〈ΨT |Ŝ |ΨT 〉+O
(
(Ψ0 −ΨT )2

)
|Ψ0〉 = |ΨT + ∆〉 : 〈ΨT + ∆|Ŝ |ΨT + ∆〉 = 〈ΨT |Ŝ |ΨT 〉 + 2〈∆|Ŝ |ΨT 〉 + 〈∆|Ŝ |∆〉

〈ΨT + ∆|Ŝ |ΨT 〉 = 〈ΨT |Ŝ |ΨT 〉 + 〈∆|Ŝ |ΨT 〉
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Comparison of various estimates for S(k)
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S
(k

)

|k|

~ k1.5

~ k1.9

VMC
DMC mixed

DMC extrapolated
RMC

Reptation Monte Carlo
(RMC)

provides pure
estimates for local
(“density-type”)
quantities

quickly loses
efficiency with
increasing system
size
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Expectation values in DMC and DFT

DMC

expectation values calculated using explicitly correlated
many-body wave function

in general, only mixed estimators 〈Ψ0|Â|ΨT 〉 available; these
depend on quality of |ΨT 〉
for the total energy and all

[
B̂, Ĥ

]
= 0 we have

〈Ψ0|B̂|ΨT 〉 = 〈Ψ0|B̂|Ψ0〉
DFT

quantities calculated from eigenfunctions of artificial
non-interacting Kohn-Sham system

these eigenfunctions (and eigenvalues) not guaranteed to have
direct physical content (but often seem to be close)

total energy prominent — K-S system constructed to have the
same total energy as the original interacting system

NC STATE UNIVERSITY



Diffusion Monte Carlo simulations of crystalline FeO under pressure 27/36

Back to FeO
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“S(k) correction” does a good job

Finite size errors at different levels of compression
−→−→−→ errors grow as electron density increases
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Transition pressure Pc revisited

Finite-size corrections (slightly) increase Pc .

pure Ewald formula → Pc = 57 ± 5GPa

S(k) correction → Pc = 65 ± 5GPa
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Equilibrium volume and related properties

Murnaghan equation of state fits the B1 AFM-II data nicely.
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Equilibrium volume and related properties, cont.

E (V ) = E0 +
K0V

K ′
0

(
(V0/V )K

′
0

K ′
0 − 1

+ 1

)
− K0V0

K ′
0 − 1

K0 = −V
(
∂P/∂V

)
T

K ′
0 =

(
∂K0/∂P

)
T

a0 (Å) K0 (GPa) K ′
0

DMC, pure Ewald 4.283(7) 189(8) 5.5(7)
DMC + S(k) correction 4.324(6) 170(10) 5.3(7)
PBE020 4.328 182 3.7
PBE010 4.327 177 3.7
PBE 4.300 191 3.5
LDA 4.185 224 4.0
experiment 4.307–4.334 140–180 2.1–5.6
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Can we access also spectral information?

[Bowen,Adler&Auker (1975)]

2.48 1.24 0.82 (eV)
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Band gap estimate in B1 at ambient pressure

∆ = E s.cell
solid [e.s.]− E s.cell

solid [g .s.] = 2.8 ± 0.4 eV
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Band gap estimate in B1 at ambient pressure, cont.

DMC, hybrid-functional DFT and LDA+U compared.
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Notes on band gaps in DMC
in ∆ = E [e.s.]− E [g .s.], the intensive quantity ∆ is
calculated from extensive energies

−→−→−→ unfavorable for errorbars

single k-point quantities; although large cancellation of kinetic
energy finite-size errors is likely (E [e.s.] and E [g .s.] are at the
same k-point), safe elimination of these is through a large
simulation cell

−→−→−→ unfavorable for errorbars

(the lowest) excited state must have a different symmetry
than the ground state (exc. state is then a groundstate within
that symmetry)

−→−→−→ might not be the case in large supercell with small
number of symmetry operations

other methods for extracting excited-state information from
DMC available, but considerably more costly
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Final words

quantum Monte Carlo is ready to be applied to solids with
correlated d electrons

FeO case study is very encouraging
good agreement with experimental data at both ambient
conditions and elevated pressure
consistently accurate for various quantities (cohesion,
Pc(B1 → iB8), equilibrium lattice constant, bulk modulus, . . . )

computer time provided by INCITE ORNL and NCSA

more good news: you can try it at home

www.qwalk.org

(Lucas Wagner, Michal Bajdich and Lubos Mitas)

the bad news: you need some 100,000+ CPU hours (for EoS)
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